GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (9)
  • AWI / Springer  (2)
  • 2005-2009  (11)
  • 1990-1994
  • 1985-1989
  • 1
    Publication Date: 2017-06-09
    Description: The distribution of egg masses of the freshwater snails Lymnaea stagnalis and Planorbarius corneus on the undersides of water lily leaves (e.g. Nuphar lutea) is related to the prevalence of the leaf-mining beetle Galerucella nymphaeae. When given the choice, Planorbarius significantly avoids leaves that were infested by the mining beetle. Conversely, Lymnaea did not discriminate against mined leaves. Intact Nuphar leaves block over 95% of incident ultraviolet radiation. Yet, ultraviolet transmission reaches almost 100% under beetle mining scars. These are several times wider than snail embryos. When exposed to natural sunlight, Lymnaea embryos proved to be resistant to ambient ultraviolet, while Planorbarius embryos were rapidly killed. Thus, one selective advantage of Planorbarius discrimination against mined leaves when depositing its eggs could be the avoidance of ultraviolet radiation passing through mining scars. Other mining-related modifications of the leaves, reduced area, decreased longevity, altered aufwuchs (i.e. biofilm and epibionts) are discussed but seem less relevant for the oviposition preference of Planorbarius. The discriminatory behaviour of this snail species was triggered by water-borne cues emitted by the damaged leaf, not by the eggs or larvae of the beetle. This study illustrates how environmental stress on a given species, ultraviolet radiation in this case, can be ecologically buffered (shading by Nuphar) or enhanced (reduction of Nuphar shading through beetle mining) by associated species. It highlights how the impact of a given stress depends on the identity of the target species as well as on the identity and role of other species in the community.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-30
    Description: Herbivory is particularly intense in tropical benthic communities, suggesting preference of constitutive, rather than inducible, anti-herbivory defense. The objective of the study was to examine whether anti-herbivore defenses in the red alga Hypnea pannosa J. Agardh and the brown algae Sargassum asperifolium Hering and G. Martens ex J. Agardh and Cystoseira myrica (S.G. Gmelin) C. Agardh could be induced and subsequently reduced in response to grazing by the amphipod Cymadusa filosa Savigny. During a 14-day treatment phase, algae were exposed to amphipod grazing or were left ungrazed (control). Subsequently, one subset of algae was used in feeding assays, whereas another was cultivated for additional 14 days without consumers (recovery phase). At the end of each phase, bioassays were conducted to detect defensive traits in terms of differences in consumption rates of grazed and control pieces of live algae and agar-based food containing nonpolar algal extracts. Consumption of grazed live S. asperifolium and H. pannosa specimens was lower than of control algae. Furthermore, nonpolar extracts of grazed S. asperifolium and C. myrica were less preferred than those from control algae. Defensive responses were exclusively detected after the treatment phase, although strong preference of ungrazed H. pannosa and C. myrica over grazed conspecifics continued throughout the recovery phase. These findings suggest that phenotypic plasticity in anti-herbivory defense of marine macroalgae 1) might be more common than previously shown, 2) could be switched on and off within 2 weeks, and 3) can be found in nonpolar algal extracts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-06-09
    Description: 1 Several theoretical models predict under what conditions maximum species diversity can be maintained, and they are often used to develop effective ecosystem management plans. 2 Two models that are currently used to predict patterns of species diversity were empirically tested in marine subtidal benthic communities of different successional stages. 3 The two models were: the interactive effects of nutrient availability and disturbance frequency proposed by Kondoh (2001; Proceedings of the Royal Society London B, 268, 269–271), and the intermediate disturbance hypothesis (IDH) proposed by Connell (1978; Science, 199, 1302–1310). 4 Interactive effects were found to be transient and only occurred in the older communities, while the unimodal pattern suggested by the IDH was not supported in either successional stage. 5 It is concluded that these models are very general and thus lack sufficient explanatory power. Both models require a number of specific prerequisites for maximum diversity to be found, and though applicable in many different ecosystems they need to be refined as tools in order that they can be effectively used in habitat management plans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Herbivory is a key factor in regulating plant biomass, thereby driving ecosystem performance. Algae have developed multiple adaptations to cope with grazers, including morphological and chemical defences. In a series of experiments we investigated whether several species of macroalgae possess anti-herbivore defences and whether these could be regulated to demand, i.e. grazing events. The potential of direct grazing on defence induction was assessed for two brown (Dictyopteris membranacea, Fucus vesiculosus) and two red seaweeds (Gelidium sesquipedale, Sphaerococcus coronopifolius) from São Rafael and Ria Formosa, Portugal. Bioassays conducted with live algal pieces and agar-based food containing lipophilic algal extracts were used to detect changes in palatability after exposure to amphipod attacks (=treatment phase). Fucus vesiculosus was the only species significantly reducing palatability in response to direct amphipod-attacks. This pattern was observed in live F. vesiculosus pieces and agar-based food containing a lipophilic extract, suggesting that lipophilic compounds produced during the treatment phase were responsible for the repulsion of grazers. Water-borne cues of grazed F. vesiculosus as well as non-grazing amphipods also reduced palatability of neighbouring conspecifics. However, this effect was only observed in live tissues of F. vesiculosus. This study is the first to show that amphipods, like isopods, are capable to induce anti-herbivory defences in F. vesiculosus and that a seasonally variable effectiveness of chemical defences might serve as a dynamic control in alga–herbivore interactions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-05-28
    Description: Assessing patterns of species distribution and abundance is important to understand the driving processes of, and predict future changes in, biodiversity. To this date, ecological studies have been mainly designed to investigate the effects of the mean magnitude of predictor variables, although ecological factors naturally vary in space and time. In a nine month long field experiment, we tested the effects of different temporal patterns (regular, lowly and highly irregular) in biomass removal (=disturbance event) on the diversity, species composition, and biomass accrual of macrobenthic assemblages grown on 15 × 15 cm2 PVC-panels. For each pattern of disturbance, disturbance events were timed at three sequences to control for possible confounding effects with recruitment patterns. Disturbance intensity was kept identical among treatments. Assemblages developed in the absence of disturbance for 3 months prior to a 150-day manipulation period, during which the biomass from 20% of the panel area was removed at each of ten disturbance events. Additional undisturbed settlement panels were deployed in the field to assess monthly recruitment rates and species succession over a one year period. Disturbance (i) reduced biomass and total species cover, (ii) changed species composition during the first half of the manipulation period significantly, and (iii) was without effect on species richness and evenness. Irregular disturbance regimes enhanced the abundance of the ascidian Ciona intestinalis, biomass accrual, and total species cover of assemblages relative to the regular disturbance regime, but had either no or only transient effects on diversity and species composition, respectively. Neither the degree of irregularity in disturbance nor the sequence of disturbance events affected any of the response variables significantly. Recruitment of species was strongly seasonal with almost only diatoms recruiting during winter, while recruitment was most intense during summer. Our results suggest that the temporal patterns of predictor variables might be of low explanatory power for the variance of responses in communities with seasonal recruitment patterns that are exposed to a high level of disturbance. Thus the need to include temporal patterns of predictor variables in experimental designs may depend on community dynamics and the characteristics of the process under investigation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-02-21
    Description: Development of a mechanistic understanding and predictions of patterns of biodiversity is a central theme in ecology. One of the most influential theories, the intermediate disturbance hypothesis (IDH), predicts maximum diversity at intermediate levels of disturbance frequency. The dynamic equilibrium model (DEM), an extension of the IDH, predicts that the level of productivity determines at what frequency of disturbance maximum diversity occurs. To test, and contrast, the predictions of these two models, a field experiment on marine hard-substratum assemblages was conducted with seven levels of disturbance frequency and three levels of nutrient availability. Consistent with the IDH, maximum diversity, measured as species richness, was observed at an intermediate frequency of disturbance. Despite documented effects on productivity, the relationship between disturbance and diversity was not altered by the nutrient treatments. Thus, in this system the DEM did not improve the understanding of patterns of diversity compared to the IDH. Furthermore, it is suggested that careful consideration of measurements and practical definitions of productivity in natural assemblages is necessary for a rigorous test of the DEM.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-09-06
    Description: Local dynamics such as resource enhancement (e.g. nutrient supply) and stochastic events of destruction (disturbances that provide new space) are hypothesized to counteractively affect species diversity and composition.We tested the independent and interactive effects of nutrients and disturbance on the development of assemblages of epibiota attached to vertical surfaces in an oligotrophic system. Nutrient concentrations were manipulated at three levels (ambient, medium and high) while disturbance was manipulated by removing biomass at seven frequencies (0x, 2x, 3x, 4x, 5x, 7x, 12x). Nutrient and disturbance regimes had opposing effects on diversity such that species richness increased with resource enhancement (nutrients) and declined with disturbance. These results support the model that increased heterogeneity of distribution of limiting resources allows the coexistence of species with low and high resource requirements.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Wiley
    In:  Journal of Phycology, 44 . pp. 85-90.
    Publication Date: 2018-05-30
    Description: The prevalence of antigrazing defense induction and the cues triggering induction in marine macroalgae are generally not well understood. We examined the capacity of defense and the mechanisms of regulation in five common perennial macroalgal species from the Baltic Sea, Furcellaria lumbricalis (Huds.) J. V. Lamour., Delesseria sanguinea (Huds.) J. V. Lamour., Phyllophora pseudoceranoides (S. G. Gmel.) Newroth et A. R. A. Taylor, Fucus serratus L., and Fucus evanescens C. Agardh. Specifically, we investigated whether direct feeding and/or waterborne cues from feeding on neighboring conspecifics decreased the palatability of the tested algae. Direct feeding by the local isopod Idotea baltica triggered the induction of chemical defense in Fur. lumbricalis, D. sanguinea, P. pseudoceranoides, F. serratus, and F. evanescens. Conversely, we did not find any evidence for waterborne cues associated with feeding to trigger defense induction in neighboring conspecifics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-07-04
    Description: 1 Plants must either tolerate consumption or defend themselves against grazer attacks. Selection for phenotypically plastic antiherbivory responses has been suggested for many plants, including a few species of seaweed, but little is known about its specificity or seasonality. 2 Multi-factorial experiments tested the effects of consumer identity (Littorina brevicula vs. Haliotis discus) and season (summer vs. autumn) on the induction of antiherbivory defences in the brown seaweed Ecklonia cava. Following a grazer-free acclimation phase, algae were incubated with grazers (treatment phase) and, subsequently, without grazers (recovery phase). Feeding preference assays, were used to assess differences in consumption rates between grazer-exposed and control plants. 3 In summer, Littorina, but not Haliotis, induced defence in Ecklonia. This defence vanished by the end of the recovery phase. In autumn, neither exposure to direct attack nor to waterborne cues induced defensive responses. 4 Both consumer identity and season of consumption can influence the ability of a given macroalgal species to induce antiherbivory defences. Tailoring such responses to spatial and temporal variation in grazer pressure could have profound ecological implications, for example changing food webs and community structure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-05-17
    Description: Future levels in ultraviolet-B (UVB) radiation are expected to increase directly due to stratospheric ozone depletion and under water indirectly by, for example, global warming effects on DOC concentrations, altered trophic interactions in the plankton, or reduced eutrophication. While detrimental UV effects have been reported at the cellular level, little to nothing is known about community-wide effects of ambient and future UVB radiation. In a 4-month field experiment, the ambient UV regime was (i) reduced by cut-off filters which removed either UVB or total UV from the solar spectrum or (ii) increased to predicted future levels by UVB lamps. To allow relating the effects of present and future UV regimes to another important ecological control of community structure and diversity in subtidal marine habitats, consumer effects were quantified by an exclusion treatment under ambient light regimes. Ambient UV regimes did not affect community structure, biomass accrual, and diversity. In contrast, under enhanced UVB levels, the dominance of the competitively superior blue mussels increased and species richness and biomass accrual decreased. Species composition of the assemblages differed between the two UV regimes. Effects of enhanced UVB radiation and of consumption on biomass accrual, diversity, and structure of the community were comparable in magnitude and timing, but of opposite direction. In contrast, the effects of enhanced UVB radiation on growth and abundance of mussels were in the same direction, but shorter and weaker than consumer effects. Most UV effects were transitory and vanished within the first 2 months of succession. Our results indicate that present and future UVB levels may be of limited importance and not stronger in effect size than other ecological controls in structuring the shallow-water low-diversity macrobenthic communities in temperate regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...