GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (1)
Document type
Years
Year
  • 1
    Publication Date: 2013-12-06
    Description: Chronic hypoxia pulmonary hypertension (CH-PHT) in adulthood is likely to be of fetal origin following intrauterine growth retardation (IUGR). Oxygen (O 2 )-sensitive voltage-gated potassium channels (Kv channels) in resistance pulmonary artery smooth muscle cells (PASMCs) play an important role in scaling pulmonary artery (PA) pressure. Expression and functional changes of Kv channels are determined, in part, by embryonic development. We hypothesized that O 2 -sensitive Kv channels play an important role in exaggerated CH-PHT following IUGR. We established a rat model of IUGR by restricting maternal food during the entire pregnancy and exposed IUGR rats and their age-matched controls aged 12 wk to hypoxia for 2 wk. We found that hypoxia exposure significantly induced increased PA pressure and thicker smooth muscle layer in the IUGR group relative to controls. We compared the constriction of the resistance PA to inhibitors of K + channels, 4-aminopyridine (4-AP), tetraethylammonium, and BaCl 2 . Despite the thickness of the smooth muscle layer, the constriction to 4-AP was significantly reduced in the IUGR group exposed to hypoxia. Consistent with these changes in pulmonary vascular reactivity, 2 wk of hypoxia induced weaker 4-AP-sensitive Kv currents in a single IUGR PASMC. Moreover, after 2 wk of hypoxia, Kv1.5 expression in resistance PAs decreased significantly in the IUGR group. Overexpression of Kv1.5 in cultured PASMCs could offset hypoxia-induced cell proliferation and hypoxia-inhibited Kv currents in the IUGR group. These results suggest that the inhibited expression of Kv1.5 in PASMCs contribute to the development of exaggerated CH-PHT in IUGR rats during adulthood.
    Print ISSN: 1040-0605
    Electronic ISSN: 1522-1504
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...