GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (2)
  • 1
    Publication Date: 2013-01-19
    Description: Xylosyltransferase I (XT-I) is an essential enzyme of proteoglycan (PG) biosynthesis pathway catalyzing the initial and rate-limiting step in glycosaminoglycan chain assembly. It plays a critical role in the regulation of PG synthesis in cartilage; however, little is known about underlying mechanism. Here, we provide evidence that, in human primary chondrocytes, IL-1β regulates XT-I gene expression into an early phase of induction and a late phase of down-regulation. Based on promoter deletions, the region up to −850 bp was defined as a major element of XT-I gene displaying both constitutive and IL-1β-regulated promoter activity. Point mutation and signaling analyses revealed that IL-1β-induced promoter activity is achieved through AP-1 response elements and mediated by SAP/JNK and p38 signaling pathways. Transactivation and chromatin immunoprecipitation assays indicated that AP-1 is a potent transactivator of XT-I promoter and that IL-1β-induced activity is mediated through increased recruitment of AP-1 to the promoter. Finally, we show that Sp3 is a repressor of XT-I promoter and bring evidence that the repressive effect of IL-1β during the late phase is mediated through Sp3 recruitment to the promoter. This suggests that modulation of Sp3 in cartilage could prevent IL-1β inhibition of PG synthesis and limit tissue degradation.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-09
    Description: Microsatellites (SSRs) are highly susceptible to expansions and contractions. When located in a coding sequence, the insertion or the deletion of a single unit for a mono-, di-, tetra-, or penta(nucleotide)-SSR creates a frameshift. As a consequence, one would expect to find only very few of these SSRs in coding sequences because of their strong deleterious potential. Unexpectedly, genomes contain many coding SSRs of all types. Here, we report on a study of their evolution in a phylogenetic context using the genomes of four primates: human, chimpanzee, orangutan, and macaque. In a set of 5,015 orthologous genes unambiguously aligned among the four species, we show that, except for tri- and hexa-SSRs, for which insertions and deletions are frequently observed, SSRs in coding regions evolve mainly by substitutions. We show that the rate of substitution in all types of coding SSRs is typically two times higher than in the rest of coding sequences. Additionally, we observe that although numerous coding SSRs are created and lost by substitutions in the lineages, their numbers remain constant. This last observation suggests that the coding SSRs have reached equilibrium. We hypothesize that this equilibrium involves a combination of mutation, drift, and selection. We thus estimated the fitness cost of mono-SSRs and show that it increases with the number of units. We finally show that the cost of coding mono-SSRs greatly varies from function to function, suggesting that the strength of the selection that acts against them can be correlated to gene functions.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...