GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (2)
Document type
Years
Year
  • 1
    Publication Date: 2012-11-02
    Description: Recently, receptors for the calcium-regulating glycoprotein hormone stanniocalcin-1 (STC-1) have been found within subfornical organ (SFO), a central structure involved in the regulation of electrolyte and body fluid homeostasis. However, whether SFO neurons produce STC-1 and how STC-1 may function in fluid homeostasis are not known. Two series of experiments were done in Sprague-Dawley rats to investigate whether STC-1 is expressed within SFO and whether it exerts an effect on water intake. In the first series, experiments were done to determine whether STC-1 was expressed within cells in SFO using immunohistochemistry, and whether protein and gene expression for STC-1 existed in SFO using Western blot and quantitative RT-PCR, respectively. Cells containing STC-1 immunoreactivity were found throughout the rostrocaudal extent of SFO. STC-1 protein expression within SFO was confirmed with Western blot, and SFO was also found to express STC-1 mRNA. In the second series, microinjections (200 nl) of STC-1, ANG II, a combination of the two or the vehicle were made into SFO in conscious, unrestrained rats. Water intake was measured at 0700 for a 1-h period after each injection in animals. Microinjections of STC-1 (17.6 or 176 nM) alone had no effect on water intake compared with controls. However, STC-1 not only attenuated the drinking responses to ANG II for about 30 min, but also decreased the total water intake over the 1-h period. These data suggest that STC-1 within the SFO may act in a paracrine/autocrine manner to modulate the neuronal responses to blood-borne ANG II. These findings also provide the first direct evidence of a physiological role for STC-1 in central regulation of body fluid homeostasis.
    Print ISSN: 0363-6119
    Electronic ISSN: 1522-1490
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-10-02
    Description: Circulating levels of leptin are elevated in individuals suffering from chronic intermittent hypoxia (CIH). Systemic and central administration of leptin elicits increases in sympathetic nervous activity (SNA), arterial pressure (AP), and heart rate (HR), and it attenuates the baroreceptor reflex, cardiovascular responses that are similar to those observed during CIH as a result of activation of chemoreceptors by the systemic hypoxia. Therefore, experiments were done in anesthetized Wistar rats to investigate the effects of leptin in nucleus of the solitary tract (NTS) on AP and HR responses, and renal SNA (RSNA) responses during activation of NTS neurons and the chemoreceptor reflex. Microinjection of leptin (5–100 ng; 20 nl) into caudal NTS pressor sites ( l -glutamate; l -Glu; 0.25 M; 10 nl) elicited dose-related increases in AP, HR, and RSNA. Leptin microinjections (5 ng; 20 nl) into these sites potentiated the increase in AP and HR elicited by l -Glu. Additionally, bilateral injections of leptin (5 ng; 100 nl) into NTS potentiated the increase in AP and attenuated the bradycardia to systemic activation of the chemoreflex. In the Zucker obese rat, leptin injections into NTS neither elicited cardiovascular responses nor altered the cardiovascular responses to activation of the chemoreflex. Taken together, these data indicate that leptin exerts a modulatory effect on neuronal circuits within NTS that control cardiovascular responses elicited during the reflex activation of arterial chemoreceptors and suggest that increased AP and SNA observed in individuals with CIH may be due, in part, by leptin's effects on the chemoreflex at the level of NTS.
    Print ISSN: 0363-6119
    Electronic ISSN: 1522-1490
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...