GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (10)
Document type
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  [Poster] In: 18. EBEC Conference, 12.-17.07.2014, Lisbon, Portugal ; e26 .
    Publication Date: 2016-05-03
    Description: The Atlantic cod (Gadus morhua) is an economically important marine fish species exploited by both fishery and aquaculture, especially in the North Atlantic and Arctic oceans. Ongoing climate changes are happening faster in the high latitude oceans with a higher increase of temperature and a steeper decrease in water pH due to anthropogenic CO2 than in the temperate regions threatening the existence of the Atlantic cod in the areas of its maximum exploitation. In this study, we investigated the mitochondrial physiology of two life-stages of cod under the sea water temperatures and pCO2 conditions forecasted for the year 2100 in the North Atlantic (+ 5 °C, 1000 μatm CO2). In embryos, the metabolism during development showed to be sensitive to rising temperatures with a general increase in respiratory activity until 9 °C (5 °C over the natural range) and a drop in activity at 12 °C mainly caused by a dramatic decrease in Complex I activity, which was not compensated by Complex II. In the adults, already well known for their metabolic plasticity, mitochondria from liver and heart are not affected by either increasing temperature or pCO2. However, in heart mitochondria of animals that were reared under warm hypercapnia (10 °C + 1000 μatm CO2), we found OXPHOS to exploit already 100% of the ETS capacity. This suggests that a further increase in temperature or pCO2 might lead to a mismatch in the ATP demand/production and consequently decrease heart performances. The different mitochondrial plasticities of the two life-stages reflect the sensitivity range at population level and thus can provide a more realistic reading frame of the potential survival of the North Atlantic cod population under climate change.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Strobel, Anneli; Leo, Elettra; Pörtner, Hans-Otto; Mark, Felix Christopher (2013): Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii. Comparative Biochemistry and Physiology Part B: Biochemistry & Molecular Biology, 166(1), 48-57, https://doi.org/10.1016/j.cbpb.2013.06.006
    Publication Date: 2023-10-28
    Description: Mitochondrial plasticity plays a central role in setting the capacity for acclimation of aerobic metabolism in ectotherms in response to environmental changes. We still lack a clear picture if and to what extent the energy metabolism and mitochondrial enzymes of Antarctic fish can compensate for changing temperatures or PCO2 and whether capacities for compensation differ between tissues. We therefore measured activities of key mitochondrial enzymes (citrate synthase (CS), cytochrome c oxidase (COX)) from heart, red muscle, white muscle and liver in the Antarctic fish Notothenia rossii after warm- (7 °C) and hypercapnia- (0.2 kPa CO2) acclimation vs. control conditions (1 °C, 0.04 kPa CO2). In heart, enzymes showed elevated activities after cold-hypercapnia acclimation, and a warm-acclimation-induced upward shift in thermal optima. The strongest increase in enzyme activities in response to hypercapnia occurred in red muscle. In white muscle, enzyme activities were temperature-compensated. CS activity in liver decreased after warm-normocapnia acclimation (temperature-compensation), while COX activities were lower after cold- and warm-hypercapnia exposure, but increased after warm-normocapnia acclimation. In conclusion, warm-acclimated N. rossii display low thermal compensation in response to rising energy demand in highly aerobic tissues, such as heart and red muscle. Chronic environmental hypercapnia elicits increased enzyme activities in these tissues, possibly to compensate for an elevated energy demand for acid-base regulation or a compromised mitochondrial metabolism, that is predicted to occur in response to hypercapnia exposure. This might be supported by enhanced metabolisation of liver energy stores. These patterns reflect a limited capacity of N. rossii to reorganise energy metabolism in response to rising temperature and PCO2.
    Keywords: Carbon dioxide, partial pressure; Carlini/Jubany Station; Citrate synthase activity, per protein; Citrate synthase activity per fresh mass; Cytochrome c oxidase activity, per fresh mass; Cytochrome c oxidase activity, per protein; Identification; Jubany_Dallmann; MULT; Multiple investigations; PotterCove; Potter Cove, King George Island, Antarctic Peninsula; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Species; SPP1158; Temperature, technical
    Type: Dataset
    Format: text/tab-separated-values, 2003 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Strobel, Anneli; Bennecke, Swaantje; Leo, Elettra; Mintenbeck, Katja; Pörtner, Hans-Otto; Mark, Felix Christopher (2012): Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2. Frontiers in Zoology, 9(1), 28, https://doi.org/10.1186/1742-9994-9-28
    Publication Date: 2024-01-26
    Description: Introduction Ongoing ocean warming and acidification increasingly affect marine ecosystems, in particular around the Antarctic Peninsula. Yet little is known about the capability of Antarctic notothenioid fish to cope with rising temperature in acidifying seawater. While the whole animal level is expected to be more sensitive towards hypercapnia and temperature, the basis of thermal tolerance is set at the cellular level, with a putative key role for mitochondria. This study therefore investigates the physiological responses of the Antarctic Notothenia rossii after long-term acclimation to increased temperatures (7°C) and elevated PCO2 (0.2 kPa CO2) at different levels of physiological organisation. Results For an integrated picture, we analysed the acclimation capacities of N. rossii by measuring routine metabolic rate (RMR), mitochondrial capacities (state III respiration) as well as intra- and extracellular acid-base status during acute thermal challenges and after long-term acclimation to changing temperature and hypercapnia. RMR was partially compensated during warm- acclimation (decreased below the rate observed after acute warming), while elevated PCO2 had no effect on cold or warm acclimated RMR. Mitochondrial state III respiration was unaffected by temperature acclimation but depressed in cold and warm hypercapnia-acclimated fish. In both cold- and warm-exposed N. rossii, hypercapnia acclimation resulted in a shift of extracellular pH (pHe) towards more alkaline values. A similar overcompensation was visible in muscle intracellular pH (pHi). pHi in liver displayed a slight acidosis after warm normo- or hypercapnia acclimation, nevertheless, long-term exposure to higher PCO2 was compensated for by intracellular bicarbonate accumulation. Conclusion The partial warm compensation in whole animal metabolic rate indicates beginning limitations in tissue oxygen supply after warm-acclimation of N. rossii. Compensatory mechanisms of the reduced mitochondrial capacities under chronic hypercapnia may include a new metabolic equilibrium to meet the elevated energy demand for acid-base regulation. New set points of acid-base regulation under hypercapnia, visible at the systemic and intracellular level, indicate that N. rossii can at least in part acclimate to ocean warming and acidification. It remains open whether the reduced capacities of mitochondrial energy metabolism are adaptive or would impair population fitness over longer timescales under chronically elevated temperature and PCO2.
    Keywords: Carbon dioxide; Carlini/Jubany Station; Condition factor; Gender; Haematocrit; Hepatosomatic index; Jubany_Dallmann; Lactate; Length, standard; Length, total; MULT; Multiple investigations; Osmotic concentration; pH, extracellular; pH, intracellular; PotterCove; Potter Cove, King George Island, Antarctic Peninsula; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Respiration rate, oxygen; Species; SPP1158; Treatment: temperature; Wet mass
    Type: Dataset
    Format: text/tab-separated-values, 451 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-15
    Keywords: Acid-base regulation; Alkalinity, total; Animalia; Antarctic; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carlini/Jubany Station; Chordata; Coast and continental shelf; Condition factor; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gender; Growth/Morphology; Haematocrit; Hepatosomatic index; Jubany_Dallmann; Laboratory experiment; Lactate; Length, standard; Length, total; MULT; Multiple investigations; Nekton; Notothenia rossii; OA-ICC; Ocean Acidification International Coordination Centre; Osmotic concentration; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, extracellular; pH, intracellular; pH, standard deviation; Polar; Potentiometric; PotterCove; Potter Cove, King George Island, Antarctic Peninsula; Respiration; Respiration rate, oxygen; Salinity; Salinity, standard deviation; Single species; Species; Temperature; Temperature, water; Temperature, water, standard deviation; Wet mass
    Type: Dataset
    Format: text/tab-separated-values, 1116 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-15
    Keywords: Alkalinity, total; Animalia; Antarctic; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carlini/Jubany Station; Citrate synthase activity, per protein; Citrate synthase activity per fresh mass; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Cytochrome c oxidase activity, per fresh mass; Cytochrome c oxidase activity, per protein; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Jubany_Dallmann; Laboratory experiment; MULT; Multiple investigations; Nekton; Notothenia rossii; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Polar; PotterCove; Potter Cove, King George Island, Antarctic Peninsula; Salinity; Salinity, standard deviation; Single species; Species; Temperature; Temperature, water; Temperature, water, standard deviation; Tissues
    Type: Dataset
    Format: text/tab-separated-values, 14843 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC3Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, ISSN: 10964959
    Publication Date: 2019-07-16
    Description: Mitochondrial plasticity plays a central role in setting the capacity for acclimation of aerobic metabolism in ectotherms in response to environmental changes. We still lack a clear picture if and to what extent the energy metabolism and mitochondrial enzymes of Antarctic fish can compensate for changing temperatures or PCO2 and whether capacities for compensation differ between tissues. We therefore measured activities of key mitochondrial enzymes (citrate synthase (CS), cytochrome c oxidase (COX)) from heart, red muscle, white muscle and liver in the Antarctic fish Notothenia rossii after warm- (7 degrees C) and hypercapnia- (0.2kPa CO2) acclimation vs. control conditions (1 degrees C, 0.04kPa CO2). In heart, enzymes showed elevated activities after cold-hypercapnia acclimation, and a warm-acclimation-induced upward shift in thermal optima. The strongest increase in enzyme activities in response to hypercapnia occurred in red muscle. In white muscle, enzyme activities were temperature-compensated. CS activity in liver decreased after warm-normocapnia acclimation (temperature-compensation), while COX activities were lower after cold- and warm-hypercapnia exposure, but increased after warm-normocapnia acclimation. In conclusion, warm-acclimated N. rossii display low thermal compensation in response to rising energy demand in highly aerobic tissues, such as heart and red muscle. Chronic environmental hypercapnia elicits increased enzyme activities in these tissues, possibly to compensate for an elevated energy demand for acid-base regulation or a compromised mitochondrial metabolism, that is predicted to occur in response to hypercapnia exposure. This might be supported by enhanced metabolisation of liver energy stores. These patterns reflect a limited capacity of N. rossii to reorganise energy metabolism in response to rising temperature and PCO2.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-08-26
    Description: Ongoing ocean warming and acidification have been found to particularly affect polar marine ecosystems. However, few data exist about the ability of Antarctic fish to respond to environmental change. We therefore studied the acclimatory capacities of the Antarctic fish Notothenia rossii after 4-6 weeks of acclimation to 7°C, hypercapnia (0.2 kPa CO2) and the combination of both. We analysed routine metabolic rate (RMR) during acute thermal challenge and after acclimation, extra- and intracellular acid-base status, mitochondrial as well as enzymatic capacities and lipid composition. Our results showed partially compensated RMR after warm acclimation and no effect of increased PCO2 on the RMR. Hypercapnic acclimation led to a general overcompensation of extracellular pH. Intracellular pH displayed a slight acidosis in liver after warm normocapnic/hypercapnic acclimation, whereas white muscle remained well buffered under hypercapnia. Mitochondrial state III respiration in liver was unaffected by temperature acclimation, but depressed in the hypercapnia acclimated animals, which went along with reduced rates of proton leak. The activities of the mitochondrial enzymes citrate synthase and cytochrome c oxidase increased during hypercapnia acclimation in red and white muscle, but not in liver and heart. Furthermore, there was a trend towards an enrichment of poly-unsaturated fatty acids in liver mitochondria towards the warm hypercapnic conditions. We conclude that N. rossii possesses basic acclimatory capacities towards ocean warming and acidification. However, these capacities are confined within strict limits, becoming obvious in metabolically more active organs like heart and liver that show less plasticity than muscle and ultimately define animal survival.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-16
    Description: Introduction: Ongoing ocean warming and acidification increasingly affect marine ecosystems, in particular around the Antarctic Peninsula. Yet little is known about the capability of Antarctic notothenioid fish to cope with rising temperature in acidifying seawater. While the whole animal level is expected to be more sensitive towards hypercapnia and temperature, the basis of thermal tolerance is set at the cellular level, with a putative key role for mitochondria. This study therefore investigates the physiological responses of the Antarctic Notothenia rossii after long-term acclimation to increased temperatures (7°C) and elevated PCO2 (0.2 kPa CO2) at different levels of physiological organisation. Results: For an integrated picture, we analysed the acclimation capacities of N. rossii by measuring routine metabolic rate (RMR), mitochondrial capacities (state III respiration) as well as intra- and extracellular acid–base status during acute thermal challenges and after long-term acclimation to changing temperature and hypercapnia. RMR was partially compensated during warm- acclimation (decreased below the rate observed after acute warming), while elevated PCO2 had no effect on cold or warm acclimated RMR. Mitochondrial state III respiration was unaffected by temperature acclimation but depressed in cold and warm hypercapnia-acclimated fish. In both cold- and warm-exposed N. rossii, hypercapnia acclimation resulted in a shift of extracellular pH (pHe) towards more alkaline values. A similar overcompensation was visible in muscle intracellular pH (pHi). pHi in liver displayed a slight acidosis after warm normo- or hypercapnia acclimation, nevertheless, long-term exposure to higher PCO2 was compensated for by intracellular bicarbonate accumulation. Conclusion: The partial warm compensation in whole animal metabolic rate indicates beginning limitations in tissue oxygen supply after warm-acclimation of N. rossii. Compensatory mechanisms of the reduced mitochondrial capacities under chronic hypercapnia may include a new metabolic equilibrium to meet the elevated energy demand for acid–base regulation. New set points of acid–base regulation under hypercapnia, visible at the systemic and intracellular level, indicate that N. rossii can at least in part acclimate to ocean warming and acidification. It remains open whether the reduced capacities of mitochondrial energy metabolism are adaptive or would impair population fitness over longer timescales under chronically elevated temperature and PCO2.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Thesis , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Biochimica et Biophysica Acta (BBA) - Bioenergetics
    In:  EPIC3EBEC Conference, Lisbon, Portugal, 2014-07-12-2014-07-17Amsterdam, Biochimica et Biophysica Acta (BBA) - Bioenergetics
    Publication Date: 2014-08-04
    Description: The Atlantic cod (Gadus morhua) is an economically important marine fish species exploited by both fishery and aquaculture, especially in the North Atlantic and Arctic oceans. Ongoing climate changes are happening faster in the high latitude oceans with a higher increase of temperature and a steeper decrease in water pH due to anthropogenic CO2 than in the temperate regions threatening the existence of the Atlantic cod in the areas of its maximum exploitation. In this study, we investigated the mitochondrial physiology of two life-stages of cod under the sea water temperatures and pCO2 conditions forecasted for the year 2100 in the North Atlantic (+ 5 °C, 1000 μatm CO2). In embryos, the metabolism during development showed to be sensitive to rising temperatures with a general increase in respiratory activity until 9 °C (5 °C over the natural range) and a drop in activity at 12 °C mainly caused by a dramatic decrease in Complex I activity, which was not compensated by Complex II. In the adults, already well known for their metabolic plasticity, mitochondria from liver and heart are not affected by either increasing temperature or pCO2. However, in heart mitochondria of animals that were reared under warm hypercapnia (10 °C + 1000 μatm CO2), we found OXPHOS to exploit already 100% of the ETS capacity. This suggests that a further increase in temperature or pCO2 might lead to a mismatch in the ATP demand/production and consequently decrease heart performances. The different mitochondrial plasticities of the two life-stages reflect the sensitivity range at population level and thus can provide a more realistic reading frame of the potential survival of the North Atlantic cod population under climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...