GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (5)
Document type
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Nesterova, Anna P; Le Bohec, Céline; Beaune, David; Pettex, Emeline; Le Maho, Yvon; Bonadonna, Francesco (2010): Do penguins dare to walk at night? Visual cues influence king penguin colony arrivals and departures. Behavioral Ecology and Sociobiology, 64(7), 1145-1156, https://doi.org/10.1007/s00265-010-0930-3
    Publication Date: 2023-12-13
    Description: Orientation based on visual cues can be extremely difficult in crowded bird colonies due to the presence of many individuals. We studied king penguins (Aptenodytes patagonicus) that live in dense colonies and are constantly faced with such problems. Our aims were to describe adult penguin homing paths on land and to test whether visual cues are important for their orientation in the colony. We also tested the hypothesis that older penguins should be better able to cope with limited visual cues due to their greater experience. We collected and examined GPS paths of homing penguins. In addition, we analyzed 8 months of penguin arrivals to and departures from the colony using data from an automatic identification system. We found that birds rearing chicks did not minimize their traveling time on land and did not proceed to their young (located in creches) along straight paths. Moreover, breeding birds' arrivals and departures were affected by the time of day and luminosity levels. Our data suggest that king penguins prefer to move in and out of the colony when visual cues are available. Still, they are capable of navigating even in complete darkness, and this ability seems to develop over the years, with older breeding birds more likely to move through the colony at nighttime luminosity levels. This study is the first step in unveiling the mysteries of king penguin orientation on land.
    Keywords: International Polar Year (2007-2008); IPY
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Despite the enormous popularity of penguins, their social behaviour remains poorly understood. Video recordings of penguins and penguin colonies are sporadic, of insufficient resolution and duration, and suffer from camera movements that may be artistically motivated but make them scientifically worthless. Recordings of penguin colonies during the winter months are particularly short in supply. Here we present three different observatories that are able to automatically take time-lapse recording over prolonged time periods under harsh climatic conditions. i) The microbs is a very low cost observatory (~700 US$), capable of recording high-resolution (12 MPix) time-lapse data. It features a water-proof Canon D10 consumer-grade camera that we programmed through a bootable SD-card. The camera is powered by a 40 W solar panel and a 100 Ah 12V battery. The microbs can record up to 32 GB of data (approximately one month at a rate of 1 image/min) before the memory card has to be changed manually. ii) To enable even longer observations at very remote locations where a regular change of the SD-card is not feasible, we designed the Mobile Emperor Penguin Observatory (MEPO). It is equipped with a night vision (b/w) and daylight (color) CCD-sensor. Images are recorded on a solid-state PC with very low energy consumption, or they can be sent via satellite (Inmarsat) that is available on large parts of the Antarctic coast. The observatory is remote-operated through the satellite link to adjust parameters such as image frame rate, to select the images to be sent via satellite or to power the observatory up or down. iii) The Single Penguin Observation & Tracking (SPOT) observatory is used to track the movements of individual penguins over prolonged time periods and count the present number of individual penguins. The observatory consists of a wide-angle (45°) camera and a high-speed (5 images/s) high resolution (11 MPix) camera equipped with a telephoto lens (400-600mm). We deployed several microbs, one MEPO and three SPOT observatory between 2011-13 at Crozet Island, Adelie Land and Atka Bay, respectively, and will present first results.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  EPIC3Physikalisches Kolloquium der Universität Bayreuth, Bayreuth, 2013-06-25-2013-06-25
    Publication Date: 2019-07-17
    Description: In polar regions, highly adapted social behavior is crucial for the survival of several species. Prominent examples are the huddling behavior of Emperor Penguins, or the crèche (group) formation of King Penguin chicks. To understand how penguins solve the physical problem of movement in densely packed (jammed) groups, we observed Emperor Penguin huddles and King Penguin fledglings with time-lapse/video imaging, and used individual bird tracking and optical flow methods to analyze their movements. We found that Emperor Penguins overcome jamming by moving periodically in large, coordinated clusters. Every 30 - 60 seconds, all penguins make small steps, which travel as a wave through the entire huddle. Over time, these small movements lead to large-scale reorganization of the huddle. Groups of King Penguin fledglings moved in irregular intervals, often attributable to predator attacks, but the individual penguins in the group also moved collectively in a coordinated fashion to ensure the integrity of the group. Our data show that the dynamics of penguin huddling and group formation is governed by intermittency and approach to kinetic arrest in striking analogy with inert non-equilibrium systems. Basic aspects of this behavior can be reproduced with a simple model of interacting point particles. Individual animals are treated as self-driven agents with situation-dependent behavior, similar to simulations of collective swarm behavior in flocks and herds. Both the spontaneous huddle formation and the observed wave patterns emerge from simple rules that only encompass the interaction between directly neighboring individuals. As an important result, our model demonstrates that a collective movement can be triggered by a forward step of any individual within the dense huddle. It remains an open question, however, why individual penguins in a huddle trigger a movement, and by which mechanism the experimentally observed periodicity of huddle movement (~ 40 seconds) remains stable.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-09-29
    Description: In polar regions, highly adapted social behavior is crucial for the survival of several species. One prominent example is the huddling behavior of Emperor penguins. To understand how Emperor penguins solve the physical problem of movement in densely packed huddles, we observed an Emperor penguin colony (Atka Bay) with time-lapse imaging and tracked the positions of more than 1400 huddling penguins. The trajectories revealed that Emperor penguins move collectively in a highly coordinated manner to ensure mobility while at the same time keeping the huddle tightly packed. Every 30 - 60 seconds, all penguins make small steps, which travel as a wave through the entire huddle. Over time, these small movements lead to large-scale reorganization of the huddle. Our data show that the dynamics of penguin huddling is governed by intermittency and approach to kinetic arrest in striking analogy with inert non-equilibrium systems. We will also present observations from a different Emperor penguin colony (Adélie Land), an Adélie penguin colony (Adélie Land), and a King penguin colony (Crozet Island).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  EPIC325. Internationale Polartagung, Hamburg, 2013-03-22-2013-03-22
    Publication Date: 2022-09-29
    Description: In polar regions, highly adapted social behavior is crucial for the survival of several species. Prominent examples are the huddling behavior of Emperor Penguins, or the crèche (group) formation of King Penguin chicks. To understand how penguins solve the physical problem of movement in densely packed (jammed) groups, we observed Emperor Penguin huddles and King Penguin fledglings with time-lapse/video imaging, and used individual bird tracking and optical flow methods to analyze their movements. We found that Emperor Penguins overcome jamming by moving periodically in large, coordinated clusters. Every 30 - 60 seconds, all penguins make small steps, which travel as a wave through the entire huddle. Over time, these small movements lead to large-scale reorganization of the huddle. Groups of King Penguin fledglings moved in irregular intervals, often attributable to predator attacks, but the individual penguins in the group also moved collectively in a coordinated fashion to ensure the integrity of the group. Our data show that the dynamics of penguin huddling and group formation is governed by intermittency and approach to kinetic arrest in striking analogy with inert non-equilibrium systems. Basic aspects of this behavior can be reproduced with a simple model of interacting point particles. Individual animals are treated as self-driven agents with situation-dependent behavior, similar to simulations of collective swarm behavior in flocks and herds. Both the spontaneous huddle formation and the observed wave patterns emerge from simple rules that only encompass the interaction between directly neighboring individuals. As an important result, our model demonstrates that a collective movement can be triggered by a forward step of any individual within the dense huddle. It remains an open question, however, why individual penguins in a huddle trigger a movement, and by which mechanism the experimentally observed periodicity of huddle movement (~ 40 seconds) remains stable.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...