GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2010-2014  (3)
Publikationsart
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2014-12-16
    Beschreibung: Here we provide three new Holocene (11–0 cal ka BP) alkenone-derived sea surface temperature (SST) records from the southernmost Chilean fjord region (50–53°S). SST estimates may be biased towards summer temperature in this region, as revealed by a large set of surface sediments. The Holocene records show consistently warmer than present-day SSTs except for the past ~ 0.6 cal ka BP. However, they do not exhibit an early Holocene temperature optimum as registered further north off Chile and in Antarctica. This may have resulted from a combination of factors including decreased inflow of warmer open marine waters due to lower sea-level stands, enhanced advection of colder and fresher inner fjord waters, and stronger westerly winds. During the mid-Holocene, pronounced short-term variations of up to 2.5°C and a cooling centered at ~ 5 cal ka BP, which coincides with the first Neoglacial glacier advance in the Southern Andes, are recorded. The latest Holocene is characterized by two pronounced cold events centered at ~ 0.6 and 0.25 cal ka BP, i.e., during the Little Ice Age. These cold events have lower amplitudes in the offshore records, suggesting an amplification of the SST signal in the inner fjords.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Climate of the Past 8 (2012): 519-534, doi:10.5194/cp-8-519-2012.
    Beschreibung: Glaciers are frequently used as indicators of climate change. However, the link between past glacier fluctuations and climate variability is still highly debated. Here, we investigate the mid- to late-Holocene fluctuations of Gualas Glacier, one of the northernmost outlet glaciers of the Northern Patagonian Icefield, using a multi-proxy sedimentological and geochemical analysis of a 15 m long fjord sediment core from Golfo Elefantes, Chile, and historical documents from early Spanish explorers. Our results show that the core can be sub-divided into three main lithological units that were deposited under very different hydrodynamic conditions. Between 5400 and 4180 cal yr BP and after 750 cal yr BP, sedimentation in Golfo Elefantes was characterized by the rapid deposition of fine silt, most likely transported by fluvio-glacial processes. By contrast, the sediment deposited between 4130 and 850 cal yr BP is composed of poorly sorted sand that is free of shells. This interval is particularly marked by high magnetic susceptibility values and Zr concentrations, and likely reflects a major advance of Gualas glacier towards Golfo Elefantes during the Neoglaciation. Several thin silt layers observed in the upper part of the core are interpreted as secondary fluctuations of Gualas glacier during the Little Ice Age, in agreement with historical and dendrochronological data. Our interpretation of the Golfo Elefantes glaciomarine sediment record in terms of fluctuations of Gualas glacier is in excellent agreement with the glacier chronology proposed for the Southern Patagonian Icefield, which is based on terrestrial (moraine) deposits. By comparing our results with independent proxy records of precipitation and sea surface temperature, we suggest that the fluctuations of Gualas glacier during the last 5400 yr were mainly driven by changes in precipitation in the North Patagonian Andes.
    Beschreibung: This research was supported by an EU FP6 Marie Curie Outgoing Fellowship to S.B. Cruise NBP0505 was funded by the US National Science Foundation, Office of Polar Programs grant number NSF/OPP 03-38137 to J. Anderson (Rice University) and J. Smith Wellner (University of Houston). The Cimar-7 Program was supported by the Chilean National Oceanographic Committee (CONA, Grant C7F 01-10 to S. Pantoja).
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    SCAR
    In:  EPIC3XXXIII Biennial Meetings, 2014 Open Science Conference, Auckland, New Zealand, 2014-08-25-2014-08-28SCAR
    Publikationsdatum: 2018-08-10
    Beschreibung: The Antarctic Circumpolar Current (ACC) plays an essential role in the thermohaline circulation and global climate. Today, a large volume of ACC water passes through the Drake Passage, the major geographic constrain for the circumpolar flow. Here we present the first millennial-scale proxy records of Holocene and last glacial variations of the Drake Passage throughflow. Our study reports geochemical, paleomagnetic, and grain-size data from a sediment core retrieved from the upper continental slope off southernmost Chile. The site is located beneath the strong Cape Horn Current that transports northern ACC water towards the Drake Passage. Our data reveal large amplitude changes in current intensity proxy records suggesting pronounced variations in surface and sub-surface flow. We interpret these changes in terms of strongly reduced contributions of northern ACC water to the Drake Passage throughflow during the glacial in general and particularly during millennial-scale cold phases as known from e.g. Antarctic ice-cores. At the same time, advection of northern ACC water into the Humboldt current system was likely enhanced. These results support climate models showing largely reduced volume transport through the Drake Passage during the last glacial maximum and an increasing throughflow during the last deglaciation that affected the strengthening of the Atlantic Meridional Overturning Circulation.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...