GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (3)
Document type
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier B.V for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 382 (2013): 161-172, doi:10.1016/j.epsl.2013.09.014.
    Description: Cadmium concentrations and isotope compositions were determined for 47 seawater samples from the high nutrient low chlorophyll (HNLC) zone of the Atlantic sector of the Southern Ocean. The samples include 13 surface waters from a transect of the Weddell Gyre and 3 depth profiles from the Weddell Sea and Drake Passage. The Southern Ocean mixed layer samples from this study and Abouchami et al. (2011) define a clear but broad ‘HNLC trend’ in a plot of ε114/110Cd versus [Cd], which is primarily a consequence of isotopic fractionation associated with biological uptake (ε114/110Cd is the deviation of the 114Cd/110Cd ratio of a sample from NIST SRM 3108 Cd in parts per 10,000). The trend is especially apparent in comparison to the large range of values shown by a global set of seawater Cd data for shallow depths. The Southern Ocean samples are also distinguished by their relatively high Cd concentrations (typically 0.2 to 0.6 nmol/kg) and moderately fractionated ε114/110Cd (generally between +4 and +8) that reflect the limited biological productivity of this region. Detailed assessment reveals fine structure within the ‘HNLC trend’, which may record differences in the biological fractionation factor, different scenarios of closed and open system isotope fractionation, and/or distinct source water compositions. Southern Ocean seawater from depths ≥1000 m has an average ε114/110Cd of +2.5 ± 0.2 (2se, n = 16), and together with previous results this establishes a relatively constant ε114/110Cd value of +3.0 ± 0.3 (2se, n = 27) for global deep waters. Significant isotopic variability was observed at intermediate depths in the Southern Ocean. Seawater from 200 m to 400 m in Weddell Sea has high Cd concentrations and ε114/110Cd as low as +1, presumably due to remineralization of Cd from biomass that records incomplete nutrient utilization. Antarctic Intermediate Water, which was sampled at 150 to 750 m depth in the Drake Passage, features a distinct Cd isotope signature of ε114/110Cd ≈ +4, which reflects biological isotope fractionation at the surface and subsequent mixing into the ocean interior. Taken together, our results demonstrate that coupled Cd isotope and concentration data provide valuable insights into the distribution and biological cycling of Cd in the water column. The highly systematic nature 55 of Cd isotope signatures may furthermore prove to be of utility for future research in marine geochemistry and paleoceanography.
    Description: This research was supported by NERC grant NE/G008973/1.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 141 (2014): 612-627, doi:10.1016/j.gca.2014.05.002.
    Description: In this study, we show that there are independent controls of 18O/16O and 13C/12C fractionation in coccolithophore and dinoflagellate calcite due to the contrasting kinetics of each isotope system. We demonstrate that the direction and magnitude of the oxygen isotope fractionation with respect to equilibrium is related to the balance between calcification rate and the replenishment of the internal pool of dissolved inorganic carbon (DIC). As such, in fast growing cells, such as those of Emiliania huxleyi and Gephyrocapsa oceanica (forming the so-called “heavy group”), calcification of the internal carbon pool occurs faster than complete isotopic re-adjustment of the internal DIC pool with H2O molecules. Hence, coccoliths reflect the heavy oxygen isotope signature of the CO2 overprinting the whole DIC pool. Conversely, in large and slow growing cells, such as Coccolithus pelagicus ssp. braarudii, complete re-equilibration is achieved due to limited influx of CO2 leading to coccoliths that are precipitated in conditions close to isotopic equilibrium (“equilibrium group”). Species exhibiting the most negative oxygen isotope composition, such as Calcidiscus leptoporus (“light group”), precipitate coccolith under increased pH in the coccolith vesicle, as previously documented by the “carbonate ion effect”. We suggest that, for the carbon isotope system, any observed deviation from isotopic equilibrium is only “apparent”, as the carbon isotopic composition in coccolith calcite is controlled by a Rayleigh fractionation originating from preferential incorporation of 12C into organic matter. Therefore, species with low PIC/POC ratios as E. huxleyi and G. oceanica are shifted towards positive carbon isotope values as a result of predominant carbon fixation into the organic matter. By contrast, cells with higher PIC/POC as C. braarudii and C. leptoporus maintain, to some extent, the original negative isotopic composition of the CO2. The calcareous dinoflagellate Thoracosphaera heimii exhibits different behaviour for both isotopic systems, in particular with respect to its very negative carbon isotope composition, owing to coeval intra and extracellular biomineralisation in this group. In this study, we also investigate the sensitivity of 18O/16O fractionation to varying ambient oxygen isotope composition of the medium for inorganic, coccolithophore, and dinoflagellate calcite precipitated under controlled laboratory conditions. The varying responses of different taxa to increased oxygen isotope composition of the growth medium may point to a potential bias in sea surface temperature reconstructions that are based on the oxygen isotopic compositions of sedimentary calcite, especially during times of changing seawater oxygen isotopic composition. Overall, this study represent an important step towards establishing a mechanistic understanding of the “vital effect” in coccolith and dinoflagellate calcite, and provides valuable information for interpreting the geochemistry of the calcareous nannofossils in the sedimentary record, at both monospecific and interspecies levels.
    Description: MH is grateful to the Natural Environment Research Council (NERC) for funding through Postdoctoral Fellowship (NE/H015523/1). TJH is supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Doherty Foundation. REMR was supported through European Research Council (ERC) grant SP2-GA-2008-200915.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 110 (2013): E1878, doi:10.1073/pnas.1305068110.
    Description: We thank François Morel for his interest in our study. Morel states that our conclusions are based on the approximate match between the Cd-isotope composition of cultured bacteria and the fractionation of Cd isotopes seen in seawater (1). This match is only a minor component of our argument, and we welcome the opportunity to reiterate our case.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...