GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (2)
Document type
Years
Year
  • 1
    Publication Date: 2012-11-13
    Description: Recent reports have revealed the existence of widespread extensively drug-resistant (XDR) P. aeruginosa high-risk clones in health care settings, but there is still scarce information on their specific chromosomal (mutational) and acquired resistance mechanisms. Up to 20 (10.5%) of 190 bloodstream isolates collected from 10 Spanish hospitals met the XDR criteria. A representative number (15 per group) of isolates classified as multidrug-resistant (MDR) (22.6%), resistant to 1 to 2 classes (moderately resistant [modR]) (23.7%), or susceptible to all antibiotics (multiS) (43.2%) were investigated in parallel. Multilocus sequence typing (MLST) analysis revealed that all XDR isolates belonged to sequence type 175 (ST175) ( n = 19) or ST111 ( n = 1), both recognized as international high-risk clones. Clonal diversity was higher among the 15 MDR isolates (4 ST175, 2 ST111, and 8 additional STs) and especially high among the 15 modR (13 different STs) and multiS (14 STs) isolates. The XDR/MDR pattern in ST111 isolates correlated with the production of VIM-2, but none of the ST175 isolates produced acquired β-lactamases. In contrast, the analysis of resistance markers in 12 representative isolates (from 7 hospitals) of ST175 revealed that the XDR pattern was driven by the combination of AmpC hyperproduction, OprD inactivation (Q142X), 3 mutations conferring high-level fluoroquinolone resistance (GyrA T83I and D87N and ParC S87W), a G195E mutation in MexZ (involved in MexXY-OprM overexpression), and the production of a class 1 integron harboring the aadB gene (gentamicin and tobramycin resistance). Of particular interest, in nearly all the ST175 isolates, AmpC hyperproduction was driven by a novel AmpR-activating mutation (G154R), as demonstrated by complementation studies using an ampR mutant of PAO1. This work is the first to describe the specific resistance markers of widespread P. aeruginosa XDR high-risk clones producing invasive infections.
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-27
    Description: Eucryphia cordifolia Cav. is a long-lived evergreen tree species, commonly found as a canopy emergent tree in the Chilean temperate rain forest. This species displays successive leaf cohorts throughout the entire growing season. Thus, full leaf expansion occurs under different environmental conditions during growing such as air temperature, vapor pressure deficit and the progress of moderate water stress (WS). These climate variations can be reflected as differences in anatomical and physiological characteristics among leaf cohorts. Thus, we investigated the potential adaptive role of different co-existing leaf cohorts in seedlings grown under shade, drought stress or a combination of the two. Photosynthetic and anatomical traits were measured in the first displayed leaf cohort and in a subsequent leaf cohort generated during the mid-season. Although most anatomical and photosynthetic pigments did not vary between cohorts, photosynthetic acclimation did occur in the leaf cohort and was mainly driven by biochemical processes such as leaf nitrogen content, Rubisco carboxylation capacity and maximal Photosystem II electron transport rather than CO 2 diffusion conductance. Cohort acclimation could be relevant in the context of climate change, as this temperate rainforest will likely face some degree of summer WS even under low light conditions. We suggest that the acclimation of the photosynthetic capacity among current leaf cohorts represents a well-tuned mechanism helping E. cordifolia seedlings to face a single stress like shade or drought stress, but is insufficient to cope with simultaneous stresses.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...