GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (10)
Document type
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Long, Matthew C; Dunbar, Robert B; Tortell, Philippe Daniel; Smith, Walker O Jr; Mucciarone, David A; DiTullio, Giacomo R (2011): Vertical structure, seasonal drawdown, and net community production in the Ross Sea, Antarctica. Journal of Geophysical Research, 116(C10), C10029, https://doi.org/10.1029/2009JC005954
    Publication Date: 2023-12-13
    Description: We calculate net community production (NCP) during summer 2005-2006 and spring 2006 in the Ross Sea using multiple approaches to determine the magnitude and consistency of rates. Water column carbon and nutrient inventories and surface ocean O2/Ar data are compared to satellite-derived primary productivity (PP) estimates and 14C uptake experiments. In spring, NCP was related to stratification proximal to upper ocean fronts. In summer, the most intense C drawdown was in shallow mixed layers affected by ice melt; depth-integrated C drawdown, however, increased with mixing depth. Delta O2/Ar-based methods, relying on gas exchange reconstructions, underestimate NCP due to seasonal variations in surface Delta O2/Ar and NCP rates. Mixed layer Delta O2/Ar requires approximately 60 days to reach steady state, starting from early spring. Additionally, cold temperatures prolong the sensitivity of gas exchange reconstructions to past NCP variability. Complex vertical structure, in addition to the seasonal cycle, affects interpretations of surface-based observations, including those made from satellites. During both spring and summer, substantial fractions of NCP were below the mixed layer. Satellite-derived estimates tended to overestimate PP relative to 14C-based estimates, most severely in locations of stronger upper water column stratification. Biases notwithstanding, NCP-PP comparisons indicated that community respiration was of similar magnitude to NCP. We observed that a substantial portion of NCP remained as suspended particulate matter in the upper water column, demonstrating a lag between production and export. Resolving the dynamic physical processes that structure variance in NCP and its fate will enhance the understanding of the carbon cycling in highly productive Antarctic environments.
    Keywords: International Polar Year (2007-2008); IPY
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sedwick, Peter; Marsay, Christopher M; Sohst, Bettina M; Aguilar-Islas, Ana M; Lohan, Maeve C; Long, Matthew C; Arrigo, Kevin R; Dunbar, Robert B; Saito, Mak A; Smith, Walker O Jr; DiTullio, Giacomo R (2011): Early season depletion of dissolved iron in the Ross Sea polynya: Implications for iron dynamics on the Antarctic continental shelf. Journal of Geophysical Research, 116(C12), C12019, https://doi.org/10.1029/2010JC006553
    Publication Date: 2023-12-13
    Description: The Ross Sea polynya is among the most productive regions in the Southern Ocean and may constitute a significant oceanic CO2 sink. Based on results from several field studies, this region has been considered seasonally iron limited, whereby a "winter reserve" of dissolved iron (dFe) is progressively depleted during the growing season to low concentrations (~0.1 nM) that limit phytoplankton growth in the austral summer (December-February). Here we report new iron data for the Ross Sea polynya during austral summer 2005-2006 (27 December-22 January) and the following austral spring 2006 (16 November-3 December). The summer 2005-2006 data show generally low dFe concentrations in polynya surface waters (0.10 ± 0.05 nM in upper 40 m, n = 175), consistent with previous observations. Surprisingly, our spring 2006 data reveal similar low surface dFe concentrations in the polynya (0.06 ± 0.04 nM in upper 40 m, n = 69), in association with relatively high rates of primary production (~170-260 mmol C/m**2/d). These results indicate that the winter reserve dFe may be consumed relatively early in the growing season, such that polynya surface waters can become "iron limited" as early as November; i.e., the seasonal depletion of dFe is not necessarily gradual. Satellite observations reveal significant biomass accumulation in the polynya during summer 2006-2007, implying significant sources of "new" dFe to surface waters during this period. Possible sources of this new dFe include episodic vertical exchange, lateral advection, aerosol input, and reductive dissolution of particulate iron.
    Keywords: Bottle, Niskin; CORSACS-1_NX1; CORSACS-1_NX10; CORSACS-1_NX11; CORSACS-1_NX2; CORSACS-1_NX3; CORSACS-1_NX4; CORSACS-1_NX5; CORSACS-1_NX6; CORSACS-1_NX7; CORSACS-1_NX8; CORSACS-1_NX9; CORSACS-2_NX12; CORSACS-2_NX13; CORSACS-2_NX14; CORSACS-2_NX15; CORSACS-2_NX16; CORSACS-2_NX17; CORSACS-2_NX18; CORSACS-2_NX19; CORSACS-2_NX20; CORSACS I; CORSACS II; DEPTH, water; Event label; International Polar Year (2007-2008); IPY; Iron, dissolvable; Iron, dissolved; Iron, particulate; Mixed layer depth; Nathaniel B. Palmer; NBP0601; NBP0601_NX1; NBP0601_NX10; NBP0601_NX11; NBP0601_NX2; NBP0601_NX3; NBP0601_NX4; NBP0601_NX5; NBP0601_NX6; NBP0601_NX7; NBP0601_NX8; NBP0601_NX9; NBP0608; NBP0608_NX12; NBP0608_NX13; NBP0608_NX14; NBP0608_NX15; NBP0608_NX16; NBP0608_NX17; NBP0608_NX18; NBP0608_NX19; NBP0608_NX20; NIS; Nitrate and Nitrite; Phosphorus, inorganic, dissolved; Ross Sea; Silicic acid
    Type: Dataset
    Format: text/tab-separated-values, 1365 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-12-12
    Keywords: -; Biological oxygen saturation anomalies; Carbon dioxide, partial pressure; CORSACS II; CTD, Seabird; CTD-R; Date/Time of event; Event label; Ice coverage; Latitude of event; Longitude of event; Mixed layer depth; Nathaniel B. Palmer; NBP0608; NBP0608_10; NBP0608_11; NBP0608_13; NBP0608_14; NBP0608_16; NBP0608_17; NBP0608_18; NBP0608_20; NBP0608_21; NBP0608_22; NBP0608_24; NBP0608_26; NBP0608_27; NBP0608_36; NBP0608_38; NBP0608_4; NBP0608_40; NBP0608_43; NBP0608_44; NBP0608_46; NBP0608_47; NBP0608_49; NBP0608_50; NBP0608_56; NBP0608_58; NBP0608_6; NBP0608_60; NBP0608_62; NBP0608_64; NBP0608_65; NBP0608_67; NBP0608_8; Net community production of carbon; Primary production, carbon assimilation, integrated; Primary production, carbon assimilation (24 hr.), integrated; Ross Sea; Sea surface salinity; Sea surface temperature; Station label
    Type: Dataset
    Format: text/tab-separated-values, 388 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-12-12
    Keywords: -; Biological oxygen saturation anomalies; Carbon dioxide, partial pressure; CORSACS I; CTD, Seabird; CTD-R; Date/Time of event; Elevation of event; Event label; Ice coverage; Latitude of event; Longitude of event; Mixed layer depth; Nathaniel B. Palmer; NBP0601; NBP0601_10; NBP0601_11; NBP0601_12; NBP0601_13; NBP0601_15; NBP0601_16; NBP0601_18; NBP0601_20; NBP0601_22; NBP0601_23; NBP0601_25; NBP0601_26; NBP0601_28; NBP0601_3; NBP0601_30; NBP0601_31; NBP0601_33; NBP0601_34; NBP0601_35; NBP0601_37; NBP0601_38; NBP0601_4; NBP0601_40; NBP0601_41; NBP0601_43; NBP0601_44; NBP0601_45; NBP0601_47; NBP0601_48; NBP0601_49; NBP0601_5; NBP0601_51; NBP0601_52; NBP0601_53; NBP0601_55; NBP0601_57; NBP0601_58; NBP0601_59; NBP0601_61; NBP0601_62; NBP0601_63; NBP0601_7; NBP0601_8; NBP0601_83; NBP0601_84; NBP0601_86; NBP0601_88; NBP0601_89; NBP0601_9; Net community production of carbon; Primary production, carbon assimilation, integrated; Primary production, carbon assimilation (24 hr.), integrated; Ross Sea; Sea surface salinity; Sea surface temperature; Station label
    Type: Dataset
    Format: text/tab-separated-values, 655 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 18 (2004): GB4030, doi:10.1029/2003GB002216.
    Description: The geochemistry of cobalt in the Peru upwelling region is dominated by its importance as a micronutrient. A large and previously undocumented flux of labile cobalt behaved as a micronutrient with correlations with major nutrients (nitrate, phosphate; r 2 = 0.90, 0.96) until depleted to ≤50 pM of strongly complexed cobalt. Co:P utilization ratios were an order of magnitude higher than in the North Pacific, comparable to utilization rates of zinc in other oceanic regions. Cobalt speciation measurements showed that available cobalt decreased over 4 orders of magnitude in this region, with shifts in phytoplankton assemblages occurring at transitions between labile and nonlabile cobalt. Only small changes in total dissolved nickel were observed, and nickel was present in a labile chemical form throughout the region. In the Peru upwelling region, cobalt uptake was highest at the surface and decreased with depth, suggesting phytoplankton uptake was a more important removal mechanism than co-oxidation with microbial manganese oxidation. These findings show the importance of cobalt as a micronutrient and that cobalt scarcity and speciation may be important in influencing phytoplankton species composition in this economically important environment.
    Description: This work was supported by the NSF under grant OCE-9618729 and OCE-0327225.
    Keywords: Cobalt speciation ; Nickel ; Peru upwelling ; Pacific ; Phytoplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 6 (2009): 3131-3147, doi: 10.5194/bg-6-3131-2009
    Description: Iron availability and temperature are important limiting factors for the biota in many areas of the world ocean, and both have been predicted to change in future climate scenarios. However, the impacts of combined changes in these two key factors on microbial trophic dynamics and nutrient cycling are unknown. We examined the relative effects of iron addition (+1 nM) and increased temperature (+4°C) on plankton assemblages of the Ross Sea, Antarctica, a region characterized by annual algal blooms and an active microbial community. Increased iron and temperature individually had consistently significant but relatively minor positive effects on total phytoplankton abundance, phytoplankton and microzooplankton community composition, as well as photosynthetic parameters and nutrient drawdown. Unexpectedly, increased iron had a consistently negative impact on microzooplankton abundance, most likely a secondary response to changes in phytoplankton community composition. When iron and temperature were increased in concert, the resulting interactive effects were greatly magnified. This synergy between iron and temperature increases would not have been predictable by examining the effects of each variable individually. Our results suggest the possibility that if iron availability increases under future climate regimes, the impacts of predicted temperature increases on plankton assemblages in polar regions could be significantly enhanced. Such synergistic and antagonistic interactions between individual climate change variables highlight the importance of multivariate studies for marine global change experiments.
    Description: This project was supported by US NSF grants ANT 0528715 to JMR, ANT 0741411, ANT 0741428 and OCE 0825319 to DAH, ANT 0338157 to WOS, ANT 0338097 to GRD, and ANT 0338350 to RBD.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 57 (2012): 989-1010, doi:10.4319/lo.2012.57.4.0989.
    Description: We present full-depth zonal sections of total dissolved cobalt, iron, manganese, and labile cobalt from the South Atlantic Ocean. A basin-scale plume from the African coast appeared to be a major source of dissolved metals to this region, with high cobalt concentrations in the oxygen minimum zone of the Angola Dome and extending 2500 km into the subtropical gyre. Metal concentrations were elevated along the coastal shelf, likely due to reductive dissolution and resuspension of particulate matter. Linear relationships between cobalt, N2O, and O2, as well as low surface aluminum supported a coastal rather than atmospheric cobalt source. Lateral advection coupled with upwelling, biological uptake, and remineralization delivered these metals to the basin, as evident in two zonal transects with distinct physical processes that exhibited different metal distributions. Scavenging rates within the coastal plume differed for the three metals; iron was removed fastest, manganese removal was 2.5 times slower, and cobalt scavenging could not be discerned from water mass mixing. Because scavenging, biological utilization, and export constantly deplete the oceanic inventories of these three hybrid-type metals, point sources of the scale observed here likely serve as vital drivers of their oceanic cycles. Manganese concentrations were elevated in surface waters across the basin, likely due to coupled redox processes acting to concentrate the dissolved species there. These observations of basin-scale hybrid metal plumes combined with the recent projections of expanding oxygen minimum zones suggest a potential mechanism for effects on ocean primary production and nitrogen fixation via increases in trace metal source inputs.
    Description: This research was supported US National Science Foundation Chemical Oceanography (Division of Ocean Sciences OCE-0452883, OCE-0752291, OCE-0928414, OCE-1031271), the Center for Microbial Research and Education, the Gordon and Betty Moore Foundation, the WHOI Coastal Ocean Institute, and the WHOI Ocean Life Institute.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 4059-4082, doi:10.5194/bg-7-4059-2010.
    Description: We report the distribution of cobalt (Co) in the Ross Sea polynya during austral summer 2005–2006 and the following austral spring 2006. The vertical distribution of total dissolved Co (dCo) was similar to soluble reactive phosphate (PO43−), with dCo and PO43− showing a significant correlation throughout the water column (r2 = 0.87, 164 samples). A strong seasonal signal for dCo was observed, with most spring samples having concentrations ranging from ~45–85 pM, whereas summer dCo values were depleted below these levels by biological activity. Surface transect data from the summer cruise revealed concentrations at the low range of this seasonal variability (~30 pM dCo), with concentrations as low as 20 pM observed in some regions where PO43− was depleted to ~0.1 μM. Both complexed Co, defined as the fraction of dCo bound by strong organic ligands, and labile Co, defined as the fraction of dCo not bound by these ligands, were typically observed in significant concentrations throughout the water column. This contrasts the depletion of labile Co observed in the euphotic zone of other ocean regions, suggesting a much higher bioavailability for Co in the Ross Sea. An ecological stoichiometry of 37.6 μmol Co:mol−1 PO43− calculated from dissolved concentrations was similar to values observed in the subarctic Pacific, but approximately tenfold lower than values in the Eastern Tropical Pacific and Equatorial Atlantic. The ecological stoichiometries for dissolved Co and Zn suggest a greater overall use of Zn relative to Co in the shallow waters of the Ross Sea, with a Co:PO43−/Zn:PO43− ratio of 1:17. Comparison of these observed stoichiometries with values estimated in culture studies suggests that Zn is a key micronutrient that likely influences phytoplankton diversity in the Ross Sea. In contrast, the observed ecological stoichiometries for Co were below values necessary for the growth of eukaryotic phytoplankton in laboratory culture experiments conducted in the absence of added zinc, implying the need for significant Zn nutrition in the Zn-Co cambialistic enzymes. The lack of an obvious kink in the dissolved Co:PO43− relationship was in contrast to Zn:PO43− and Cd:PO43− kinks previously observed in the Ross Sea. An excess uptake mechanism for kink formation is proposed as a major driver of Cd:PO43− kinks, where Zn and Cd uptake in excess of that needed for optimal growth occurs at the base of the euphotic zone, and no clear Co kink occurs because its abundances are too low for excess uptake. An unusual characteristic of Co geochemistry in the Ross Sea is an apparent lack of Co scavenging processes, as inferred from the absence of dCo removal below the euphotic zone. We hypothesize that this vertical distribution reflects a low rate of Co scavenging by Mn oxidizing bacteria, perhaps due to Mn scarcity, relative to the timescale of the annual deep winter mixing in the Ross Sea. Thus Co exhibits nutrient-like behavior in the Ross Sea, in contrast to its hybrid-type behavior in other ocean regions, with implications for the possibility of increased marine Co inventories and utility as a paleooceanographic proxy.
    Description: This research was supported by the US National Science Foundation through research grants (OPP-0440840, OPP-0338097, OPP-0732665, OCE-0452883, OCE-0752991, OCE-0928414).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C12019, doi:10.1029/2010JC006553.
    Description: The Ross Sea polynya is among the most productive regions in the Southern Ocean and may constitute a significant oceanic CO2 sink. Based on results from several field studies, this region has been considered seasonally iron limited, whereby a “winter reserve” of dissolved iron (dFe) is progressively depleted during the growing season to low concentrations (~0.1 nM) that limit phytoplankton growth in the austral summer (December–February). Here we report new iron data for the Ross Sea polynya during austral summer 2005–2006 (27 December–22 January) and the following austral spring 2006 (16 November–3 December). The summer 2005–2006 data show generally low dFe concentrations in polynya surface waters (0.10 ± 0.05 nM in upper 40 m, n = 175), consistent with previous observations. Surprisingly, our spring 2006 data reveal similar low surface dFe concentrations in the polynya (0.06 ± 0.04 nM in upper 40 m, n = 69), in association with relatively high rates of primary production (~170–260 mmol C m−2 d−1). These results indicate that the winter reserve dFe may be consumed relatively early in the growing season, such that polynya surface waters can become “iron limited” as early as November; i.e., the seasonal depletion of dFe is not necessarily gradual. Satellite observations reveal significant biomass accumulation in the polynya during summer 2006–2007, implying significant sources of “new” dFe to surface waters during this period. Possible sources of this new dFe include episodic vertical exchange, lateral advection, aerosol input, and reductive dissolution of particulate iron.
    Description: This research was supported by U.S. National Science Foundation awards OPP-0338164 to PNS, OPP- 0338350 to RBD, OPP-0440840 to MAS, OPP-0338157 to WOS, and OPP-0338097 to GRD.
    Description: 2012-06-15
    Keywords: Ross Sea ; Iron ; Phytoplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2011. This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums. The definitive version was published in Frontiers in Microbiology 2 (2011): 160, doi:10.3389/fmicb.2011.00160.
    Description: The Ross Sea is home to some of the largest phytoplankton blooms in the Southern Ocean. Primary production in this system has previously been shown to be iron limited in the summer and periodically iron and vitamin B12 colimited. In this study, we examined trace metal limitation of biological activity in the Ross Sea in the austral spring and considered possible implications for vitamin B12 nutrition. Bottle incubation experiments demonstrated that iron limited phytoplankton growth in the austral spring while B12, cobalt, and zinc did not. This is the first demonstration of iron limitation in a Phaeocystis antarctica-dominated, early season Ross Sea phytoplankton community. The lack of B12 limitation in this location is consistent with previous Ross Sea studies in the austral summer, wherein vitamin additions did not stimulate P. antarctica growth and B12 was limiting only when bacterial abundance was low. Bottle incubation experiments and a bacterial regrowth experiment also revealed that iron addition directly enhanced bacterial growth. B12 uptake measurements in natural water samples and in an iron fertilized bottle incubation demonstrated that bacteria serve not only as a source for vitamin B12, but also as a significant sink, and that iron additions enhanced B12 uptake rates in phytoplankton but not bacteria. Additionally, vitamin uptake rates did not become saturated upon the addition of up to 95 pM B12. A rapid B12 uptake rate was observed after 13 min, which then decreased to a slower constant uptake rate over the next 52 h. Results from this study highlight the importance of iron availability in limiting early season Ross Sea phytoplankton growth and suggest that rates of vitamin B12 production and consumption may be impacted by iron availability.
    Description: This research was supported by NSF grants OCE-0752291, OPP-0440840, OPP-0338097, OPP-0338164, ANT-0732665, OCE-0452883, and OCE-1031271, the Center for Microbial Oceanography Research and Education (CMORE) and a National Science Foundation (NSF) Graduate Research Fellowship (2007037200) and an Environmental Protection Agency STAR Fellowship to EMB (F6E20324).
    Keywords: Iron limitation ; Vitamin B12 ; Ross Sea ; Colimitation ; Bacteria ; Phytoplankton ; Iron fertilization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...