GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (34)
Document type
Keywords
Years
Year
  • 11
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bednaršek, Nina; Tarling, Geraint A; Bakker, Dorothee C E; Fielding, Sophie; Cohen, Anne L; Kuzirian, Alan; McCorkle, Daniel C; Lézé, Bertrand; Montagna, Roberto (2012): Description and quantification of pteropod shell dissolution: A sensitive bioindicator of ocean acidification. Global Change Biology, 18(7), 2378-2388, https://doi.org/10.1111/j.1365-2486.2012.02668.x
    Publication Date: 2024-05-22
    Description: Anthropogenic ocean acidification is likely to have negative effects on marine calcifying organisms, such as shelled pteropods, by promoting dissolution of aragonite shells. Study of shell dissolution requires an accurate and sensitive method for assessing shell damage. Shell dissolution was induced through incubations in CO2 enriched seawater for between 4 and 14 days. We describe a procedure that allows the level of dissolution to be assessed and classified into three main types: Type I with partial dissolution of the prismatic layer; Type II with exposure of underlying crossed-lamellar layer, and Type III, where crossed-lamellar layer shows signs of dissolution. Levels of dissolution showed a good correspondence to the incubation conditions, with the most severe damage found in specimens held for 14 d in undersaturated condition (Ohm ~ 0.8). This methodology enables the response of small pelagic calcifiers to acidified conditions to be detected at an early stage, thus making pteropods a valuable bioindicator of future ocean acidification.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Antarctic; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Coulometric titration; Dissolution rate; Dissolution rate, standard deviation; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Individuals, non-dissolving; Individuals, non-dissolving, standard-deviation; Laboratory experiment; Limacina helicina antarctica; Mollusca; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phosphate; Polar; Salinity; Scanning electron microscope (SEM); Silicate; Single species; Species; Temperature, water; Time, incubation; Titration potentiometric; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 188 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2009. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 22 no. 4 (2009): 118-127.
    Description: Stony corals build hard skeletons of calcium carbonate (CaCO3) by combining calcium with carbonate ions derived, ultimately, from seawater. The concentration of carbonate ions relative to other carbonate species in seawater is rather low, so corals expend energy to raise the pH of seawater sequestered in an isolated, extracellular compartment where crystal growth occurs. This action converts plentiful bicarbonate ions to the carbonate ions required for calcification, allowing corals to produce CaCO3 about 100 times faster than it could otherwise form. It is this rapid and efficient production of CaCO3 crystals that enables corals to build coral reefs. Ocean acidification reduces the pH and thus the abundance of carbonate ions in seawater. Corals living in acidified seawater continue to produce CaCO3 and expend as much energy as their counterparts in normal seawater to raise the pH of the calcifying fluid. However, in acidified seawater, corals are unable to elevate the concentration of carbonate ions to the level required for normal skeletal growth. In several experiments, we found that boosting the energetic status of corals by enhanced heterotrophic feeding or moderate increases in inorganic nutrients helped to offset the negative impact of ocean acidification. However, this built-in defense is unlikely to benefit corals as levels of CO2 in the atmosphere continue to rise. Most climate models predict that the availability of inorganic nutrients and plankton in the surface waters where corals live will decrease as a consequence of global warming. Thus, corals and coral reefs may be significantly more vulnerable to ocean acidification than previously thought.
    Description: Anne L. Cohen acknowledges support from the WHOI Directorate for our Marine Calcification and Culture Labs, from WHOI’s Ocean Life and Tropical Research Institutes, and from NSF CO-0648157. Michael Holcomb’s graduate research was supported in part by an NSF graduate student fellowship, an MIT Presidential Award, and an International Coral Reef Society fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 31 (2004): L16310, doi:10.1029/2004GL020600.
    Description: The strontium-to-calcium ratio (Sr/Ca) of reef coral skeleton is an important tool for reconstructing past sea surface temperatures (SSTs). However, the accuracy of paleoSSTs derived from fossil coral Sr/Ca is challenged by evidence that physiological processes influence skeletal chemistry. Here we show that water level variations from tidal forcing are correlated with changes in coral Sr/Ca that cannot be accounted for by changes in SST. Ion microprobe measurements of Sr/Ca ratios in a Pacific Porites lutea reveal high-frequency variations at periods of ~6, ~10, and ~25 days. The relationship between Sr/Ca and temperature on these short timescales does not follow trends observed at longer periods, indicating that an additional forcing is required to explain our observations. We demonstrate that Sr/Ca is correlated with both tidal water level variations and SST, and that their contributions to the Sr/Ca content of the skeleton vary as a function of period. We propose that water level influences Sr/Ca indirectly via modulation of photosynthetically-active radiation (PAR) that drives large changes in zooxanthellate photosynthesis.
    Description: This research was supported by WHOI Ocean Life Institute grant 25051316 to ALC; NSF grants EAR-9628749 and EAR-9904400 to the WHOI Northeast National Ion Microprobe Facility; DAMD 17-93-J-3052 supported ALC’s fieldwork on JA.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Experimental Marine Biology and Ecology 386 (2010): 27-33, doi:10.1016/j.jembe.2010.02.007.
    Description: Zooxanthellate colonies of the scleractinian coral Astrangia poculata were grown under combinations of ambient and elevated nutrients (5 μM NO3 -, 0.3 μM PO4 -3, and 2 nM Fe+2) and CO2 (~780 ppmv) treatments for a period of 6 months. Coral calcification rates, estimated from buoyant weights, were not significantly affected by moderately elevated nutrients at ambient CO2 and were negatively affected by elevated CO2 at ambient nutrient levels. However, calcification by corals reared under elevated nutrients combined with elevated CO2 was not significantly different from that of corals reared under ambient conditions, suggesting that CO2 enrichment can lead to nutrient limitation in zooxanthellate corals. A conceptual model is proposed to explain how nutrients and CO2 interact to control zooxanthellate coral calcification. Nutrient limited corals are unable to utilize an increase in dissolved inorganic carbon (DIC) as nutrients are already limiting growth, thus the effect of elevated CO2 on saturation state drives the calcification response. Under nutrient replete conditions, corals may have the ability to utilize more DIC, thus the calcification response to CO2 becomes the product of a negative effect on saturation state and a positive effect on gross carbon fixation, depending upon which dominates, the calcification response can be either positive or negative. This may help explain how the range of coral responses found in different studies of ocean acidification can be obtained.
    Description: Funding for this work was provided by the Ocean Life Institute, NSF OCE-0648157, and an International Society for Reef Studies / Ocean Conservancy Fellowship. This material is based upon work supported under a National Science Foundation Graduate Research Fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 9 (2012): 29-39, doi:10.5194/bg-9-29-2012.
    Description: The effects of nutrients and pCO2 on zooxanthellate and azooxanthellate colonies of the temperate scleractinian coral Astrangia poculata (Ellis and Solander, 1786) were investigated at two different temperatures (16 °C and 24 °C). Corals exposed to elevated pCO2 tended to have lower relative calcification rates, as estimated from changes in buoyant weights. Experimental nutrient enrichments had no significant effect nor did there appear to be any interaction between pCO2 and nutrients. Elevated pCO2 appeared to have a similar effect on coral calcification whether zooxanthellae were present or absent at 16 °C. However, at 24 °C, the interpretation of the results is complicated by a significant interaction between gender and pCO2 for spawning corals. At 16 °C, gamete release was not observed, and no gender differences in calcification rates were observed – female and male corals showed similar reductions in calcification rates in response to elevated CO2 (15% and 19% respectively). Corals grown at 24 °C spawned repeatedly and male and female corals exhibited two different growth rate patterns – female corals grown at 24 °C and exposed to CO2 had calcification rates 39% lower than females grown at ambient CO2, while males showed a non-significant decline of 5% under elevated CO2. The increased sensitivity of females to elevated pCO2 may reflect a greater investment of energy in reproduction (egg production) relative to males (sperm production). These results suggest that both gender and spawning are important factors in determining the sensitivity of corals to ocean acidification, and considering these factors in future research may be critical to predicting how the population structures of marine calcifiers will change in response to ocean acidification.
    Description: This material is based upon work supported under a National Science Foundation Graduate Research Fellowship, the WHOI Ocean Life Institute, NSF OCE-1041106, and an International Society for Reef Studies/Ocean Conservancy Fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/csv
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 27 (2012): PA3231, doi:10.1029/2012PA002313.
    Description: Accurate low-latitude sea surface temperature (SST) records that predate the instrumental era are needed to put recent warming in the context of natural climate variability and to evaluate the persistence of lower frequency climate variability prior to the instrumental era and the possible influence of anthropogenic climate change on this variability. Here we present a 235-year-long SST reconstruction based on annual growth rates (linear extension) of three colonies of the Atlantic coral Siderastrea siderea sampled at two sites on the northeastern Yucatan Peninsula, Mexico, located within the Atlantic Warm Pool (AWP). AWP SSTs vary in concert the Atlantic Multidecadal Oscillation (AMO), a basin-wide, quasiperiodic (∼60–80 years) oscillation of North Atlantic SSTs. We demonstrate that the annual linear growth rates of all three coral colonies are significantly inversely correlated with SST. We calibrate annual linear growth rates to SST between 1900 and 1960 AD. The linear correlation coefficient over the calibration period is r = −0.77 and −0.66 over the instrumental record (1860–2008 AD). We apply our calibration to annual linear growth rates to extend the SST record to 1775 AD and show that multidecadal SST variability has been a persistent feature of the AWP, and likely, of the North Atlantic over this time period. Our results imply that tropical Atlantic SSTs remained within 1°C of modern values during the past 225 years, consistent with a previous reconstruction based on coral growth rates and with most estimates based on the Mg/Ca of planktonic foraminifera from marine sediments.
    Description: Funding was provided by a scholarship to L.F.V.B. from ‘Consejo Nacional de Ciencia y Tecnología’ (CONACyT-Mexico), by CONACyT projects 104358 and 23749 to P.B., and by NSF OCE-0926986 to A.L.C. and D.W.O.
    Description: 2013-03-29
    Keywords: Atlantic Warm Pool ; Atlantic multidecadal variability ; Little Ice Age ; Sr/Ca ; Coral ; Sea surface temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Experimental Marine Biology and Ecology 440 (2013): 126-131, doi:10.1016/j.jembe.2012.12.003.
    Description: In situ skeletal markers have been widely used to quantify skeletal growth rates of scleractinian corals on sub-annual time-scales. Nevertheless, an evaluation of different techniques, both in terms of their efficacy and potential impacts on the growth process itself, has not been undertaken. Here the effects of exposure to four different dyes (alizarin, alizarin complexone, calcein, oxytetracycline) and isotope spikes (Ba and Sr) on the growth rates of scleractinian corals are compared. Oxytetracycline increased coral growth. Alizarin, alizarin complexone, calcein, and Sr and Ba isotope spikes had no significant effect on coral growth, but polyp extension appeared reduced during exposure to alizarin and alizarin complexone. Calcein provided a more intense fluorescent mark than either alizarin or alizarin complexone. Isotope spikes were challenging to locate using isotope ratio analysis techniques. Thus, calcein appears best suited for marking short-term calcification increments in corals, while a combination of alizarin or alizarin complexone and calcein may be useful for dual labeling experiments as there is little overlap in their fluorescence spectra.
    Description: Funding for this work was provided by a Lizard Island Doctoral Fellowship, the Ocean Life Institute, NSF OCE-1041106, and an International Society for Reef Studies / Ocean Conservancy Fellowship. This material is based upon work supported under a National Science Foundation Graduate Research Fellowship and a National Science Foundation International Post-Doctoral Fellowship.
    Keywords: Alizarin ; Calcein ; Isotope ; Coral ; Calcification ; Stain
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e61065, doi:10.1371/journal.pone.0061065.
    Description: Ocean acidification, characterized by elevated pCO2 and the associated decreases in seawater pH and calcium carbonate saturation state (Ω), has a variable impact on the growth and survival of marine invertebrates. Larval stages are thought to be particularly vulnerable to environmental stressors, and negative impacts of ocean acidification have been seen on fertilization as well as on embryonic, larval, and juvenile development and growth of bivalve molluscs. We investigated the effects of high CO2 exposure (resulting in pH = 7.39, Ωar = 0.74) on the larvae of the bay scallop Argopecten irradians from 12 h to 7 d old, including a switch from high CO2 to ambient CO2 conditions (pH = 7.93, Ωar = 2.26) after 3 d, to assess the possibility of persistent effects of early exposure. The survival of larvae in the high CO2 treatment was consistently lower than the survival of larvae in ambient conditions, and was already significantly lower at 1 d. Likewise, the shell length of larvae in the high CO2 treatment was significantly smaller than larvae in the ambient conditions throughout the experiment and by 7 d, was reduced by 11.5%. This study also demonstrates that the size effects of short-term exposure to high CO2 are still detectable after 7 d of larval development; the shells of larvae exposed to high CO2 for the first 3 d of development and subsequently exposed to ambient CO2 were not significantly different in size at 3 and 7 d than the shells of larvae exposed to high CO2 throughout the experiment.
    Description: This work was funded by a Woods Hole Oceanographic Institution Interdisciplinary Award to Mullineaux & McCorkle; and awards to Mullineaux & White, to McCorkle, and to Cohen & McCorkle through NOAA (National Oceanic and Admosphereic Administration) Sea Grant #NA10OAR4170083. White was funded through a National Defense Science and Engineering Graduate Fellowship through the American Society for Engineering Education.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 19 (2009): Q07005, doi:10.1029/2009GC002411.
    Description: We reared primary polyps (new recruits) of the common Atlantic golf ball coral Favia fragum for 8 days at 25°C in seawater with aragonite saturation states ranging from ambient (Ω = 3.71) to strongly undersaturated (Ω = 0.22). Aragonite was accreted by all corals, even those reared in strongly undersaturated seawater. However, significant delays, in both the initiation of calcification and subsequent growth of the primary corallite, occurred in corals reared in treatment tanks relative to those grown at ambient conditions. In addition, we observed progressive changes in the size, shape, orientation, and composition of the aragonite crystals used to build the skeleton. With increasing acidification, densely packed bundles of fine aragonite needles gave way to a disordered aggregate of highly faceted rhombs. The Sr/Ca ratios of the crystals, measured by SIMS ion microprobe, increased by 13%, and Mg/Ca ratios decreased by 45%. By comparing these variations in elemental ratios with results from Rayleigh fractionation calculations, we show that the observed changes in crystal morphology and composition are consistent with a 〉80% decrease in the amount of aragonite precipitated by the corals from each “batch” of calcifying fluid. This suggests that the saturation state of fluid within the isolated calcifying compartment, while maintained by the coral at levels well above that of the external seawater, decreased systematically and significantly as the saturation state of the external seawater decreased. The inability of the corals in acidified treatments to achieve the levels of calcifying fluid supersaturation that drive rapid crystal growth could reflect a limit in the amount of energy available for the proton pumping required for calcification. If so, then the future impact of ocean acidification on tropical coral ecosystems may depend on the ability of individuals or species to overcome this limitation and achieve the levels of calcifying fluid supersaturation required to ensure rapid growth.
    Description: This study was supported by NSF OCE-0648157 and NSF OCE-0823527 and the Bermuda Institute for Ocean Sciences.
    Keywords: Ocean acidification ; Coral ; Sr/Ca ; Calcification ; Mg/Ca ; Biomineralization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 36 (2009): L11703, doi:10.1029/2009GL038677.
    Description: Proxy reconstructions and model simulations suggest that steeper interhemispheric sea surface temperature (SST) gradients lead to southerly Intertropical Convergence Zone (ITCZ) migrations during periods of North Atlantic cooling, the most recent of which was the Little Ice Age (LIA; ∼100–450 yBP). Evidence suggesting low-latitude Atlantic cooling during the LIA was relatively small (〈1°C) raises the possibility that the ITCZ may have responded to a hemispheric SST gradient originating in the extratropics. We use an atmospheric general circulation model (AGCM) to investigate the relative influence of low-latitude and extratropical SSTs on the meridional position of the ITCZ. Our results suggest that the ITCZ responds primarily to local, low-latitude SST anomalies and that small cool anomalies (〈0.5°C) can reproduce the LIA precipitation pattern suggested by paleoclimate proxies. Conversely, even large extratropical cooling does not significantly impact low-latitude hydrology in the absence of ocean-atmosphere interaction.
    Description: This work was supported by NSF grants OCE 0623364 and ATM 033746 as well as the student research fund of MIT’s Department of Earth, Atmospheric and Planetary Science.
    Keywords: Climate ; ITCZ ; Little Ice Age
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...