GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (7)
Material
Language
Years
  • 2010-2014  (7)
Year
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2011
    In:  Journal of Physical Oceanography Vol. 41, No. 11 ( 2011-11-01), p. 2242-2258
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 41, No. 11 ( 2011-11-01), p. 2242-2258
    Abstract: Simple idealized layered models and primitive equation models show that the meridional gradient of the zonally averaged pressure has no direct relation with the meridional flow. This demonstrates a contradiction in an often-used parameterization in zonally averaged models. The failure of this parameterization reflects the inconsistency between the model of Stommel and Arons and the box model of Stommel, as previously pointed out by Straub. A new closure is proposed. The ocean is divided in two dynamically different regimes: a narrow western boundary layer and an interior ocean; zonally averaged quantities over these regions are considered. In the averaged equations three unknowns appear: the interior zonal pressure difference Δpi, the zonal pressure difference Δpb of the boundary layer, and the zonal velocity uδ at the interface between the two regions. Here Δpi is parameterized using a frictionless vorticity balance, Δpb by the difference of the mean pressure in the interior and western boundary, and uδ by the mean zonal velocity of the western boundary layer. Zonally resolved models, a layer model, and a primitive equation model validate the new parameterization by comparing with the respective zonally averaged counterparts. It turns out that the zonally averaged models reproduce well the buoyancy distribution and the meridional flow in the zonally resolved model versions with respect to the mean and time changes.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 2010
    In:  Ocean Modelling Vol. 32, No. 1-2 ( 2010), p. 14-24
    In: Ocean Modelling, Elsevier BV, Vol. 32, No. 1-2 ( 2010), p. 14-24
    Type of Medium: Online Resource
    ISSN: 1463-5003
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2010
    detail.hit.zdb_id: 1126496-2
    detail.hit.zdb_id: 1498544-5
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2010
    In:  Ocean Dynamics Vol. 60, No. 1 ( 2010-2), p. 141-153
    In: Ocean Dynamics, Springer Science and Business Media LLC, Vol. 60, No. 1 ( 2010-2), p. 141-153
    Type of Medium: Online Resource
    ISSN: 1616-7341 , 1616-7228
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2010
    detail.hit.zdb_id: 2063267-8
    detail.hit.zdb_id: 201122-0
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Physical Oceanography Vol. 44, No. 12 ( 2014-12-01), p. 3160-3184
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 44, No. 12 ( 2014-12-01), p. 3160-3184
    Abstract: Possibilities to construct a realistic quasi-global ocean model in Boussinesq approximation with a closed energy cycle are explored in this study. In such a model, the energy related to the mean variables would interact with all parameterized forms of energy without any spurious energy sources or sinks. This means that the energy available for interior mixing in the ocean would be only controlled by external energy input from the atmosphere and the tidal system and by internal exchanges. In the current implementation of such a consistent model, however, numerical biases and sources due to the nonlinear equation of state violate energy conservation, resulting in an overall residual up to several percent. In three (approximately) consistent model versions with different scenarios of mesoscale eddy dissipation, the parameterized internal wave field provides between 2 and 3 TW for interior mixing from the total external energy input of about 4 TW, such that a transfer between 0.3 and 0.4 TW into mean potential energy contributes to drive the large-scale circulation in the model. In contrast, the wind work on the mean circulation contributes by about 1.8 TW to the large-scale circulation in all model versions. It is shown that the consistent model versions are more energetic than standard and inconsistent model versions and in better agreement with hydrographic observations.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Physical Oceanography Vol. 43, No. 8 ( 2013-08), p. 1759-1779
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 43, No. 8 ( 2013-08), p. 1759-1779
    Abstract: An energetically consistent model for the diapycnal diffusivity induced by breaking of internal gravity waves is proposed and tested in local and global settings. The model [Internal Wave Dissipation, Energy and Mixing (IDEMIX)] is based on the spectral radiation balance of the wave field, reduced by integration over the wavenumber space, which yields a set of balances for energy density variables in physical space. A further simplification results in a single partial differential equation for the total energy density of the wave field. The flux of energy to high vertical wavenumbers is parameterized by a functional derived from the wave–wave scattering integral of resonant wave triad interactions, which also forms the basis for estimates of dissipation rates and related diffusivities of ADCP and hydrography fine-structure data. In the current version of IDEMIX, the wave energy is forced by wind-driven near-inertial motions and baroclinic tides, radiating waves from the respective boundary layers at the surface and the bottom into the ocean interior. The model predicts plausible magnitudes and three-dimensional structures of internal wave energy, dissipation rates, and diapycnal diffusivities in rough agreement to observational estimates. IDEMIX is ready for use as a mixing module in ocean circulation models and can be extended with more spectral components.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Schweizerbart ; 2013
    In:  Meteorologische Zeitschrift Vol. 22, No. 1 ( 2013-02-01), p. 75-88
    In: Meteorologische Zeitschrift, Schweizerbart, Vol. 22, No. 1 ( 2013-02-01), p. 75-88
    Type of Medium: Online Resource
    ISSN: 0941-2948
    Uniform Title: The temperature in Bremen since 1803 - embedding data fragments into homogeneous time series
    RVK:
    Language: English , English
    Publisher: Schweizerbart
    Publication Date: 2013
    detail.hit.zdb_id: 511391-X
    detail.hit.zdb_id: 2045168-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Physical Oceanography Vol. 44, No. 8 ( 2014-08-01), p. 2093-2106
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 44, No. 8 ( 2014-08-01), p. 2093-2106
    Abstract: The recently proposed Internal Wave Dissipation, Energy and Mixing (IDEMIX) model, describing the propagation and dissipation of internal gravity waves in the ocean, is extended. Compartments describing the energy contained in the internal tides and the near-inertial waves at low, vertical wavenumber are added to a compartment of the wave continuum at higher wavenumbers. Conservation equations for each compartment are derived based on integrated versions of the radiative transfer equation of weakly interacting waves. The compartments interact with each other by the scattering of tidal energy to the wave continuum by triad wave–wave interactions, which are strongly enhanced equatorward of 28° due to parametric subharmonic instability of the tide and by scattering to the continuum of both tidal and near-inertial wave energy over rough topography and at continental margins. Global numerical simulations of the resulting model using observed stratification, forcing functions, and bottom topography yield good agreement with available observations.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...