GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Human Molecular Genetics, Oxford University Press (OUP), Vol. 23, No. 25 ( 2014-12-20), p. 6826-6837
    Type of Medium: Online Resource
    ISSN: 1460-2083 , 0964-6906
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2014
    detail.hit.zdb_id: 1474816-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 71, No. 8 ( 2011-04-15), p. 3142-3151
    Abstract: A distal portion of human chromosome 1p is often deleted in neuroblastomas and other cancers and it is generally assumed that this region harbors one or more tumor suppressor genes. In neuroblastoma, a 261 kb region at 1p36.3 that encompasses the smallest region of consistent deletion pinpoints the locus for calmodulin binding transcription activator 1 (CAMTA1). Low CAMTA1 expression is an independent predictor of poor outcome in multivariate survival analysis, but its potential functionality in neuroblastoma has not been explored. In this study, we used inducible cell models to analyze the impact of CAMTA1 on neuroblastoma biology. In neuroblastoma cells that expressed little endogenous CAMTA1, its ectopic expression slowed cell proliferation, increasing the relative proportion of cells in G1/G0 phases of the cell cycle, inhibited anchorage-independent colony formation, and suppressed the growth of tumor xenografts. CAMTA1 also induced neurite-like processes and markers of neuronal differentiation in neuroblastoma cells. Further, retinoic acid and other differentiation- inducing stimuli upregulated CAMTA1 expression in neuroblastoma cells. Transciptome analysis revealed 683 genes regulated on CAMTA1 induction and gene ontology analysis identified genes consistent with CAMTA1-induced phenotypes, with a significant enrichment for genes involved in neuronal function and differentiation. Our findings define properties of CAMTA1 in growth suppression and neuronal differentiation that support its assignment as a 1p36 tumor suppressor gene in neuroblastoma. Cancer Res; 71(8); 3142–51. ©2011 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2011
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2012
    In:  Cancer Research Vol. 72, No. 23 ( 2012-12-01), p. 6079-6088
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 23 ( 2012-12-01), p. 6079-6088
    Abstract: A broad range of human malignancies is associated with nonrandom 1p36 deletions, suggesting the existence of tumor suppressors encoded in this region. Evidence for tumor-specific inactivation of 1p36 genes in the classic “two-hit” manner is scarce; however, many tumor suppressors do not require complete inactivation but contribute to tumorigenesis by partial impairment. We discuss recent data derived from both human tumors and functional cancer models indicating that the 1p36 genes CHD5, CAMTA1, KIF1B, CASZ1, and miR-34a contribute to cancer development when reduced in dosage by genomic copy number loss or other mechanisms. We explore potential interactions among these candidates and propose a model where heterozygous 1p36 deletion impairs oncosuppressive pathways via simultaneous downregulation of several dosage-dependent tumor suppressor genes. Cancer Res; 72(23); 6079–88. ©2012 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 70, No. 9 ( 2010-05-01), p. 3791-3802
    Abstract: The cell cycle regulator, SKP2, is overexpressed in various cancers and plays a key role in p27 degradation, which is involved in tumor cell dedifferentiation. Little is known about the mechanisms leading to impaired SKP2 transcriptional control in tumor cells. We used neuroblastoma as a model to study SKP2 regulation because SKP2 transcript levels gradually increase with aggressiveness of neuroblastoma subtypes. The highest SKP2 levels are found in neuroblastomas with amplified MYCN. Accordingly, we found 5.5-fold (range, 2–9.5) higher SKP2 core promoter activity in MYCN-amplified cells. Higher SKP2 core promoter activity in MYCN-amplified cells is mediated through a defined region at the transcriptional start site. This region includes a specific E2F-binding site that makes SKP2 activation largely independent of mitogenic signals integrated through the SP1/ELK-1 site. We show by chromatin immunoprecipitation that SKP2 activation through the transcriptional start site in MYCN-amplified cells is associated with the low abundance of pRB-E2F1 complexes bound to the SKP2 promoter. Transcriptional control of SKP2 through this regulatory mechanism can be reestablished in MYCN-amplified cells by restoring pRB activity using selective small compound inhibitors of CDK4. In contrast, doxorubicin or nutlin-3 treatment—both leading to p53-p21 activation—or CDK2 inhibition had no effect on SKP2 regulation in MYCN-amplified cells. Together, this implies that deregulated MYCN protein levels in MYCN-amplified neuroblastoma cells activate SKP2 through CDK4 induction, abrogating repressive pRB-E2F1 complexes bound to the SKP2 promoter. Cancer Res; 70(9); 3791–802. ©2010 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2010
    In:  Cancer Research Vol. 70, No. 8_Supplement ( 2010-04-15), p. 568-568
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 70, No. 8_Supplement ( 2010-04-15), p. 568-568
    Abstract: The cell cycle regulator, SKP2, is overexpressed in various cancers, and plays a key role in p27 degradation, which is involved in tumor cell dedifferentiation. Little is known about the mechanisms leading to impaired SKP2 transcriptional control in tumor cells. We used neuroblastoma as a model to study SKP2 regulation because SKP2 transcript levels gradually increase with aggressiveness of neuroblastoma subtypes. Highest SKP2 levels are found in neuroblastomas with amplified MYCN. Accordingly, we found 5.5-fold (range 2-9.5) higher SKP2 core promoter activity in MYCN-amplified cells. Higher SKP2 core promoter activity in MYCN-amplified cells is mediated through a defined region at the transcriptional start site (TSSR). This region includes a specific E2F-binding site that makes SKP2 activation largely independent of mitogenic signals integrated through the SP1/ELK-1 site. We demonstrate by chromatin immunoprecipitation that SKP2 activation through the TSSR in MYCN-amplified cells is associated with low abundance of pRB-E2F1 complexes bound to the SKP2 promoter. Transcriptional control of SKP2 via this regulatory mechanism can be re-established in MYCN-amplified cells by restoring pRB activity using selective small compound inhibitors of CDK4. In contrast, doxorubicin or nutlin-3 treatment - both leading to p53-p21 activation - or CDK2 inhibition had no effect on SKP2 regulation in MYCN-amplified cells. Together, this implies that deregulated MYCN protein levels in MYCN-amplified neuroblastoma cells activate SKP2 through CDK4 induction, abrogating repressive pRB-E2F1 complexes bound to the SKP2 promoter. Note: This abstract was not presented at the AACR 101st Annual Meeting 2010 because the presenter was unable to attend. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 568.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...