GLORIA

GEOMAR Library Ocean Research Information Access

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2010
    In:  Journal of Climate Vol. 23, No. 11 ( 2010-06-01), p. 2941-2958
    In: Journal of Climate, American Meteorological Society, Vol. 23, No. 11 ( 2010-06-01), p. 2941-2958
    Abstract: Multicentury preindustrial control simulations from six of the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) models are used to examine the relationship between low-frequency precipitation variations in the Great Plains (GP) region of the United States and global sea surface temperatures (SSTs). This study builds on previous work performed with atmospheric models forced by observed SSTs during the twentieth century and extends it to a coupled model context and longer time series. The climate models used in this study reproduce the precipitation climatology over the United States reasonably well, with maximum precipitation occurring in early summer, as observed. The modeled precipitation time series exhibit negative “decadal” anomalies, identified using a 5-yr running mean, of amplitude comparable to that of the twentieth-century droughts. It is found that low-frequency anomalies over the GP are part of a large-scale pattern of precipitation variations, characterized by anomalies of the same sign as in the GP region over Europe and southern South America and anomalies of opposite sign over northern South America, India, and Australia. The large-scale pattern of the precipitation anomalies is associated with global-scale atmospheric circulation changes; during wet periods in the GP, geopotential heights are raised in the tropics and high latitudes and lowered in the midlatitudes in most models, with the midlatitude jets displaced toward the equator in both hemispheres. Statistically significant correlations are found between the decadal precipitation anomalies in the GP region and tropical Pacific SSTs in all the models. The influence of other oceans (Indian and tropical and North Atlantic), which previous studies have identified as potentially important, appears to be model dependent.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2010
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Past Global Changes (PAGES) ; 2013
    In:  PAGES news Vol. 21, No. 2 ( 2013-8), p. 58-59
    In: PAGES news, Past Global Changes (PAGES), Vol. 21, No. 2 ( 2013-8), p. 58-59
    Type of Medium: Online Resource
    ISSN: 1811-1602
    URL: Issue
    Language: Unknown
    Publisher: Past Global Changes (PAGES)
    Publication Date: 2013
    detail.hit.zdb_id: 2779253-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Climate, American Meteorological Society, Vol. 25, No. 8 ( 2012-04-15), p. 2622-2651
    Abstract: This study presents an overview of the El Niño–Southern Oscillation (ENSO) phenomenon and Pacific decadal variability (PDV) simulated in a multicentury preindustrial control integration of the NCAR Community Climate System Model version 4 (CCSM4) at nominal 1° latitude–longitude resolution. Several aspects of ENSO are improved in CCSM4 compared to its predecessor CCSM3, including the lengthened period (3–6 yr), the larger range of amplitude and frequency of events, and the longer duration of La Niña compared to El Niño. However, the overall magnitude of ENSO in CCSM4 is overestimated by ~30%. The simulated ENSO exhibits characteristics consistent with the delayed/recharge oscillator paradigm, including correspondence between the lengthened period and increased latitudinal width of the anomalous equatorial zonal wind stress. Global seasonal atmospheric teleconnections with accompanying impacts on precipitation and temperature are generally well simulated, although the wintertime deepening of the Aleutian low erroneously persists into spring. The vertical structure of the upper-ocean temperature response to ENSO in the north and south Pacific displays a realistic seasonal evolution, with notable asymmetries between warm and cold events. The model shows evidence of atmospheric circulation precursors over the North Pacific associated with the “seasonal footprinting mechanism,” similar to observations. Simulated PDV exhibits a significant spectral peak around 15 yr, with generally realistic spatial pattern and magnitude. However, PDV linkages between the tropics and extratropics are weaker than observed.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2013
    In:  Journal of Geophysical Research: Oceans Vol. 118, No. 10 ( 2013-10), p. 4755-4770
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 118, No. 10 ( 2013-10), p. 4755-4770
    Type of Medium: Online Resource
    ISSN: 2169-9275
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2013
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2012
    In:  Journal of Geophysical Research: Oceans Vol. 117, No. C4 ( 2012-04), p. n/a-n/a
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 117, No. C4 ( 2012-04), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2012
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: ICES Journal of Marine Science, Oxford University Press (OUP), Vol. 69, No. 10 ( 2012-12-01), p. 1753-1768
    Abstract: Hare, J.A., Manderson, J.P., Nye, J.A., Alexander, M.A., Auster, P.J., Borggaard, D.L., Capotondi, A.M., Damon-Randall, K.B., Heupel, E., Mateo, I., O'Brien, L., Richardson, D.E., Stock, C.A., and Biege, S.T. 2012. Cusk (Brosme brosme) and climate change: assessing the threat to a candidate marine fish species under the US Endangered Species Act. – ICES Journal of Marine Science, 69: 1753–1768. In the Northwest Atlantic Ocean cusk (Brosme brosme) has declined dramatically, primarily as a result of fishing activities. These declines have led to concern about its status, which has prompted reviews under the US Endangered Species Act and the Canadian Species at Risk Act. Changes in distribution and abundance of a number of marine fish in the Northwest Atlantic have been linked to climate variability and change, suggesting that both fishing and climate may affect the status of cusk. Our goal was to evaluate potential effects of climate change on Northwest Atlantic cusk distribution. Coupling a species niche model with the output from an ensemble of climate models, we projected cusk distribution in the future. Our results indicate cusk habitat in the region will shrink and fragment, which is a result of a spatial mismatch between high complexity seafloor habitat and suitable temperature. The importance of habitat patch connectivity for cusk is poorly understood, so the population-level consequences of climate-related habitat fragmentation are uncertain. More broadly, climate change may reduce appropriate thermal habitat and increase habitat fragmentation for other cold-water species in the region; thereby, increasing the potential for regional overexploitation and extirpation.
    Type of Medium: Online Resource
    ISSN: 1095-9289 , 1054-3139
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2012
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...