GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2010
    In:  Ocean Science Vol. 6, No. 4 ( 2010-12-13), p. 1013-1026
    In: Ocean Science, Copernicus GmbH, Vol. 6, No. 4 ( 2010-12-13), p. 1013-1026
    Abstract: Abstract. The flow of Atlantic water across the Greenland-Scotland Ridge (Atlantic inflow) is critical for conditions in the Nordic Seas and Arctic Ocean by importing heat and salt. Here, we present a decade-long series of measurements from the Iceland-Faroe inflow branch (IF-inflow), which carries almost half the total Atlantic inflow. The observations show no significant trend in volume transport of Atlantic water, but temperature and salinity increased during the observational period. On shorter time scales, the observations show considerable variations but no statistically significant seasonal variation is observed and even weekly averaged transport values were consistently uni-directional from the Atlantic into the Nordic Seas. Combining transport time-series with sea level height from satellite altimetry and wind stress reveals that the force driving the IF-inflow across the topographic barrier of the Ridge is mainly generated by a pressure gradient that is due to a continuously maintained low sea level in the Southern Nordic Seas. This implies that the relative stability of the IF-inflow derives from the processes that lower the sea level by generating outflow from the Nordic Seas, especially the thermohaline processes that generate overflow. The IF-inflow is an important component of the system coupling the Arctic region to the North Atlantic through the thermohaline circulation, which has been predicted to weaken in the 21st century. Our observations show no indication of weakening.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2010
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2010
    In:  Drinking Water Engineering and Science Vol. 3, No. 1 ( 2010-01-13), p. 1-9
    In: Drinking Water Engineering and Science, Copernicus GmbH, Vol. 3, No. 1 ( 2010-01-13), p. 1-9
    Abstract: Abstract. The paper gives an overview of the methods for removal of natural organic matter (NOM) in water, particularly humic substances (HS), with focus on the Norwegian experiences. It is demonstrated that humic substances may be removed by a variety of methods, such as; molecular sieving through nanofiltration membranes, coagulation with subsequent floc separation (including granular media or membrane filtration), oxidation followed by biofiltration and sorption processes including chemisorption (ion exchange) and physical adsorption (activated carbon). All these processes are in use in Norway and the paper gives an overview of the operational experiences.
    Type of Medium: Online Resource
    ISSN: 1996-9465
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2010
    detail.hit.zdb_id: 2435281-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature Geoscience, Springer Science and Business Media LLC, Vol. 4, No. 10 ( 2011-10), p. 723-727
    Type of Medium: Online Resource
    ISSN: 1752-0894 , 1752-0908
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2011
    detail.hit.zdb_id: 2396648-8
    detail.hit.zdb_id: 2405323-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Lithos, Elsevier BV, Vol. 200-201 ( 2014-07), p. 386-401
    Type of Medium: Online Resource
    ISSN: 0024-4937
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2014
    detail.hit.zdb_id: 1494884-9
    detail.hit.zdb_id: 221624-3
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Physical Oceanography Vol. 44, No. 4 ( 2014-04-01), p. 1230-1243
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 44, No. 4 ( 2014-04-01), p. 1230-1243
    Abstract: The cold ice shelf water (ISW) that formed below the Filchner–Ronne Ice Shelf in the southwestern Weddell Sea, Antarctica, escapes the ice shelf cavity through the Filchner Depression and spills over its sill at a rate of 1.6 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1), thus contributing significantly to the production of Weddell Sea Bottom Water. Here, the authors examine all available observational data from the region—including five year-long time series of mooring data from the Filchner sill—to examine the seasonal variability of the outflow. The temperature of the ISW outflow is found to vary seasonally by 0.07°C with a maximum in April. The accompanying signal in salinity causes a seasonal signal in density of 0.03–0.04 kg m−3, potentially changing the penetration depth of the ISW plume by more than 500 m. Contrary to recent modeling, the observations show no seasonal variability in outflow velocity. The seasonality observed at the sill is, at least partly, due to the admixture of high-salinity shelf water from the Berkner Bank. Observations and numerical modeling suggest, however, seasonal signals in the circulation upstream (i.e., in the ice shelf cavity and in the Filchner Depression) that—although processes and linkages are unclear—are likely to contribute to the seasonal signal observed at the sill. In the plume region downstream of the sill, the source variability is apparent only within the very densest portions of the ISW plume. In the more diluted part of the plume, the source variability is overcome by the seasonality in the properties of the water entrained at the shelf break. This will have implications for the properties of the generated bottom waters.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2012
    In:  Journal of Geophysical Research: Earth Surface Vol. 117, No. F4 ( 2012-12), p. n/a-n/a
    In: Journal of Geophysical Research: Earth Surface, American Geophysical Union (AGU), Vol. 117, No. F4 ( 2012-12), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2012
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Ocean Science, Copernicus GmbH, Vol. 9, No. 4 ( 2013-07-09), p. 639-654
    Abstract: Abstract. From 1994 to 2011, instruments measuring ocean currents (Acoustic Doppler Current Profilers; ADCPs) have been moored on a section crossing the Faroe–Shetland Channel. Together with CTD (Conductivity Temperature Depth) measurements from regular research vessel occupations, they describe the flow field and water mass structure in the channel. Here, we use these data to calculate the average volume transport and properties of the flow of warm water through the channel from the Atlantic towards the Arctic, termed the Atlantic inflow. We find the average volume transport of this flow to be 2.7 ± 0.5 Sv (1 Sv = 106 m3 s–1) between the shelf edge on the Faroe side and the 150 m isobath on the Shetland side. The average heat transport (relative to 0 °C) was estimated to be 107 ± 21 TW (1 TW = 1012 W) and the average salt import to be 98 ± 20 × 106 kg s−1. Transport values for individual months, based on the ADCP data, include a large level of variability, but can be used to calibrate sea level height data from satellite altimetry. In this way, a time series of volume transport has been generated back to the beginning of satellite altimetry in December 1992. The Atlantic inflow has a seasonal variation in volume transport that peaks around the turn of the year and has an amplitude of 0.7 Sv. The Atlantic inflow has become warmer and more saline since 1994, but no equivalent trend in volume transport was observed.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2013
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...