GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (2)
  • Natural Sciences  (2)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2010
    In:  Proceedings of the National Academy of Sciences Vol. 107, No. 34 ( 2010-08-24), p. 15151-15156
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 34 ( 2010-08-24), p. 15151-15156
    Abstract: Studies of mouse models of anemia have long provided fundamental insights into red blood cell formation and function. Here we show that the semidominant mouse mutation Nan (“neonatal anemia”) carries a single amino acid change (E339D) within the second zinc finger of the erythroid Krüppel-like factor (EKLF), a critical erythroid regulatory transcription factor. The mutation alters the DNA-binding specificity of EKLF so that it no longer binds promoters of a subset of its DNA targets. Remarkably, even when mutant Nan and wild-type EKLF alleles are expressed at equivalent levels, the mutant form selectively interferes with expression of EKLF target genes whose promoter elements it no longer binds. This interference yields a distorted genetic output and selective protein deficiencies that differ from those seen in EKLF-heterozygous and EKLF-null red blood cells and presents a unique and unexpected mechanism of inherited disease.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2012
    In:  Science Vol. 338, No. 6107 ( 2012-11-02), p. 647-651
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 338, No. 6107 ( 2012-11-02), p. 647-651
    Abstract: Carbon–nitrogen (C–N) bond-forming reactions of amines with aryl halides to generate arylamines (anilines), mediated by a stoichiometric copper reagent at elevated temperature ( 〉 180°C), were first described by Ullmann in 1903. In the intervening century, this and related C–N bond-forming processes have emerged as powerful tools for organic synthesis. Here, we report that Ullmann C–N coupling can be photoinduced by using a stoichiometric or a catalytic amount of copper, which enables the reaction to proceed under unusually mild conditions (room temperature or even –40°C). An array of data are consistent with a single-electron transfer mechanism, representing the most substantial experimental support to date for the viability of this pathway for Ullmann C–N couplings.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2012
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...