GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 29 ( 2011-07-19), p. 11983-11988
    Abstract: High-throughput sequencing technology enables population-level surveys of human genomic variation. Here, we examine the joint allele frequency distributions across continental human populations and present an approach for combining complementary aspects of whole-genome, low-coverage data and targeted high-coverage data. We apply this approach to data generated by the pilot phase of the Thousand Genomes Project, including whole-genome 2–4× coverage data for 179 samples from HapMap European, Asian, and African panels as well as high-coverage target sequencing of the exons of 800 genes from 697 individuals in seven populations. We use the site frequency spectra obtained from these data to infer demographic parameters for an Out-of-Africa model for populations of African, European, and Asian descent and to predict, by a jackknife-based approach, the amount of genetic diversity that will be discovered as sample sizes are increased. We predict that the number of discovered nonsynonymous coding variants will reach 100,000 in each population after ∼1,000 sequenced chromosomes per population, whereas ∼2,500 chromosomes will be needed for the same number of synonymous variants. Beyond this point, the number of segregating sites in the European and Asian panel populations is expected to overcome that of the African panel because of faster recent population growth. Overall, we find that the majority of human genomic variable sites are rare and exhibit little sharing among diverged populations. Our results emphasize that replication of disease association for specific rare genetic variants across diverged populations must overcome both reduced statistical power because of rarity and higher population divergence.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2012
    In:  Science Vol. 335, No. 6071 ( 2012-02-24), p. 930-931
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 335, No. 6071 ( 2012-02-24), p. 930-931
    Abstract: Mendelian genetic disorders, rare clinical phenotypes arising from a single-gene mutation, are extremely diverse traits that affect every organ system, age group, and human population ( 1 ). Their cumulative incidence is rare (under 5%) because the clinical phenotypes are deleterious and affected individuals rarely reproduce. They persist in the population by de novo mutation in the past few generations, but some recessive mutations are an exception because their effects can be sheltered in carriers for hundreds of generations. Identifying the genes and mutations for over 2500 Mendelian disorders—one of the early fruits of the Human Genome Project ( 2 )—has been recently spectacularly advanced by sequencing entire exomes (the protein-coding content of the genome) ( 3 ). Nevertheless, we will need to closely examine gene-regulatory sequences to understand the full spectrum of Mendelian phenotypic variation. Indeed, on page 966 of this issue, Lee et al. ( 4 ) demonstrate that a disorder called Joubert syndrome is caused by mutations in either of two different, adjacent genes that share a common regulatory region (constituting a so-called cisregulatory module). This is one example of how human genetics is maturing from a focus on single genes into a more genomic view.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2012
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2011
    In:  Science Vol. 334, No. 6052 ( 2011-10-07), p. 15-15
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 334, No. 6052 ( 2011-10-07), p. 15-15
    Abstract: Next week, the international congress of human genetics convenes in Montreal, where genomic science, its technologies, genetic disease, and personalized medicine will be discussed. Translating current knowledge into medical practice is an important goal for the public who support medical research, and for the scientists and clinicians who articulate the critical research needs of our time. However, despite innumerable successful gene discoveries through genomics, a major impediment is our lack of knowledge of how these genes affect the fundamental biological mechanisms that are dysregulated in disease. If genomic medicine is to prosper, we need to turn our attention to this gaping hole.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2011
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Elsevier BV ; 2013
    In:  Cell Vol. 155, No. 1 ( 2013-09), p. 21-26
    In: Cell, Elsevier BV, Vol. 155, No. 1 ( 2013-09), p. 21-26
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2013
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 50 ( 2014-12-16), p. 17690-17692
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 50 ( 2014-12-16), p. 17690-17692
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...