GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (1)
  • 2010-2014  (1)
Document type
Source
Language
Years
Year
DDC
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Chemistry, Organic. ; Amines. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (292 pages)
    Edition: 1st ed.
    ISBN: 9783642539299
    Series Statement: Topics in Current Chemistry Series ; v.343
    DDC: 547.042
    Language: English
    Note: Intro -- Preface -- Contents -- Control of Asymmetry in the Radical Addition Approach to Chiral Amine Synthesis -- 1 Background and Introduction -- 2 Intermolecular Radical Addition to Chiral N-Acylhydrazones -- 2.1 Use of Chiral Auxiliaries in Radical Additions to Imino Compounds -- 2.2 Design of Chiral N-Acylhydrazones -- 2.3 Preparation and Initial Reactivity Studies of Chiral N-Acylhydrazones -- 2.3.1 Additions of Secondary and Tertiary Radicals -- 2.3.2 Triethylborane-Mediated Radical Additions Without Tin -- 2.4 Manganese-Mediated Radical Addition: Discovery and Method Development -- 2.5 Hybrid Radical-Ionic Annulation -- 2.5.1 Pyrrolidine Synthesis -- 2.5.2 Stepwise Annulation in Piperidine Synthesis -- 2.5.3 Application to Formal Synthesis of Quinine -- 2.6 Applications in Amino Acid Synthesis -- 2.6.1 Synthesis of gamma-Amino Acids -- 2.6.2 Synthesis of α,α-Disubstituted α-Amino Acids -- 2.7 Considerations for Synthesis Design Using Mn-Mediated Radical Addition -- 2.7.1 Functional Group Compatibility -- 2.7.2 Stereoconvergence for Flexibility in Synthetic Application -- 3 Asymmetric Catalysis of Radical Addition -- 4 Summary -- References -- Stereoselective Formation of Amines by Nucleophilic Addition to Azomethine Derivatives -- 1 Introduction -- 2 1,2-Addition of Unstabilized Carbanions to Chiral Azomethine Derivatives -- 2.1 Electrophilicity of Azomethine Derivatives -- 2.2 Diastereoselective Addition to Chiral Imines -- 2.2.1 Chiral Imines and Derivatives Obtained from Chiral Carbonyl Derivatives -- 2.2.2 Chiral Imines and Derivatives Obtained from Chiral Amines -- 2.3 Stoichiometric Amounts of Chiral Reagents -- 2.4 Catalytic Asymmetric Nucleophilic Addition -- 2.4.1 Background: Lewis Base Activation of the Nucleophile vs Transition Metal Catalysis -- 2.4.2 Addition of Alkylmetals (sp3 Carbon). , 2.4.3 Addition of Alkenyl, Aryl, and Heteroarylmetals (sp2 Carbon) -- 2.4.4 Addition of Alkynylmetals (sp Carbon) -- 2.4.5 Addition of Allylmetal -- 3 Conclusion -- References -- Transition Metal-Catalyzed Enantioselective Hydrogenation of Enamides and Enamines -- 1 Introduction -- 2 Enantioselective Hydrogenation of Enamides -- 2.1 Acyclic beta-Unsubstituted Enamides -- 2.1.1 Acyclic α-Arylethenamides -- 2.1.2 Acyclic α-Alkylethenamides -- 2.1.3 Other Acyclic beta-Unsubstituted Enamides -- 2.2 Acyclic beta-Substituted Enamides -- 2.2.1 Acyclic beta-Alkyl Substituted α-Arylenamides -- 2.2.2 Acyclic beta-Methoxymethoxy Substituted α-Arylenamides -- 2.2.3 Acyclic beta-Substituted α-Alkylenamides -- 2.3 Cyclic Enamides -- 3 Enantioselective Hydrogenation of Enamines -- 3.1 Acyclic Enamines -- 3.1.1 Acyclic α-Arylethenamines -- 3.1.2 Acyclic beta-Substituted α-Arylethenamines -- 3.2 Cyclic Enamines -- 4 Conclusion and Outlook -- References -- Asymmetric Hydrogenation of Imines -- 1 Introduction -- 2 Transition Metal Catalysts for Asymmetric Hydrogenation of Imines -- 2.1 Rh-Catalyzed Asymmetric Hydrogenation of Imines -- 2.2 Ti-Catalyzed Asymmetric Hydrogenation of Imines -- 2.3 Ru-Catalyzed Asymmetric Hydrogenation of Imines -- 2.4 Ir-Catalyzed Asymmetric Hydrogenation of Imines -- 2.4.1 Diphosphine Ligands in Ir-Based Catalysts -- 2.4.2 P,N Ligands in Ir-Based Catalysts -- 2.4.3 Phosphite, Phosphinite, and Phosphoramidite Ligands in Ir-Based Catalysts -- 2.4.4 Other Ir Catalysts -- 2.4.5 Additive Effects and Mechanistic Perspectives -- 2.5 Pd-Catalyzed Asymmetric Hydrogenation of Imines -- 2.5.1 Pd-Based Catalysts for Asymmetric Hydrogenation of Imines -- 2.5.2 Inhibitory Effect of Amine Product and Activation Strategy -- 3 Asymmetric Hydrogenation of Acyclic Imines -- 3.1 Asymmetric Hydrogenation of Activated Acyclic Imines. , 3.2 Asymmetric Hydrogenation of Non-activated Acyclic Imines -- 3.3 Asymmetric Hydrogenation of N-H Imines -- 4 Asymmetric Hydrogenation of Cyclic Imines -- 4.1 Asymmetric Hydrogenation of Activated Cyclic Imines -- 4.2 Asymmetric Hydrogenation of Non-activated Cyclic Imine Substrates -- 5 Conclusion -- References -- Advances in Transition Metal-Catalyzed Asymmetric Hydrogenation of Heteroaromatic Compounds -- 1 Introduction -- 2 Asymmetric Hydrogenation of Quinolines -- 2.1 Chiral Diphosphine Ligands -- 2.2 Other Chiral Phosphorus-Containing Ligands -- 2.3 Chiral Diamine Ligands -- 3 Asymmetric Hydrogenation of Isoquinolines -- 4 Asymmetric Hydrogenation of Quinoxalines -- 4.1 Chiral Phosphorus-Containing Ligands -- 4.2 Chiral Phosphine-Free Ligands -- 4.3 Metal/Brønsted Acid Catalytic System -- 5 Asymmetric Hydrogenation of Pyridines -- 6 Asymmetric Hydrogenation of Indoles and Pyrroles -- 7 Asymmetric Hydrogenation of Furans and Benzofurans -- 7.1 Chiral Phosphorus-Containing Ligands -- 7.2 Chiral N-Heterocyclic Carbene Ligands -- 8 Asymmetric Hydrogenation of Thiophenes and Benzothiophenes -- 9 Asymmetric Hydrogenation of Imidazoles and Oxazoles -- 10 Catalyst Immobilization -- 10.1 Biphasic Catalytic Systems -- 10.2 Catalyst Immobilization with Soluble Linear Polymer -- 10.3 Chiral Dendrimeric Catalyst -- 10.4 Catalyst Immobilization in Ionic Liquid -- 10.5 Catalyst Immobilization with Magnetic Nanoparticles -- 11 Mechanistic Aspects -- 11.1 Mechanism for Asymmetric Hydrogenation of Quinolines -- 11.2 Mechanism for Asymmetric Hydrogenation of Quinoxalines -- 12 Summary and Perspectives -- References -- Asymmetric Hydroamination -- 1 Introduction -- 2 Hydroamination of Alkenes -- 2.1 Metal-Catalyzed Intermolecular Hydroamination of Alkenes -- 2.2 Enzymatic Intermolecular Hydroamination of Alkenes -- 2.3 Cope-Type Hydroamination. , 2.4 Intramolecular Hydroamination of Aminoalkenes -- 2.4.1 Rare Earth Metal-Based Catalysts -- 2.4.2 Alkali Metal-Based Catalysts -- 2.4.3 Alkaline Earth Metal-Based Catalysts -- 2.4.4 Group 4 Metal-Based Catalysts -- 2.4.5 Group 5 Metal-Based Catalysts -- 2.4.6 Late Transition Metal-Based Catalysts -- 2.4.7 Organocatalytic Asymmetric Hydroamination of Aminoalkenes -- 2.4.8 Cope-Type Intramolecular Hydroamination -- 3 Hydroamination of Dienes -- 3.1 Intermolecular Hydroamination of Dienes -- 3.2 Intramolecular Hydroamination of Aminodienes -- 4 Hydroamination of Allenes -- 4.1 Intermolecular Hydroamination of Allenes -- 4.2 Intramolecular Hydroamination of Aminoallenes -- 5 Hydroamination of Alkynes -- 6 Hydroamination with Enantiomerical Pure Amines -- 6.1 Hydroaminations Using Achiral Catalysts -- 6.2 Kinetic Resolution of Chiral Aminoalkenes and Aminoallenes -- 7 Synthesis of Chiral Amines via Reaction Sequences Involving Hydroamination -- 8 Conclusions -- References -- Asymmetric Reductive Amination -- 1 Introduction -- 2 Organometallic Catalysis -- 2.1 Metal Catalyzed Hydrogenation -- 2.2 Metal Catalyzed Transfer Hydrogenation -- 3 Organocatalysis -- 3.1 Hydrosilanes as Hydrogen Source -- 3.2 Hantzsch Esters as Hydrogen Source -- 4 Biocatalysis -- 4.1 ARA with Amino Acid Dehydrogenases -- 4.2 ARA with omega-Transaminases -- 5 Summary and Outlook -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...