GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Abundance per volume; Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, particulate, production per cell; Carbon, organic, particulate, production per cell; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Category; Chromista; Cysts; Fractionation of calcite; Fractionation of organic carbon; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression; Growth/Morphology; Growth rate; Identification; Incubation duration; Laboratory experiment; Laboratory strains; Mediterranean Sea Acidification in a Changing Climate; MedSeA; Myzozoa; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at equilibrator temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon/particulate organic carbon ratio; Pelagos; pH; Phytoplankton; Potentiometric; Potentiometric titration; Protein name; Replicates; Salinity; Single species; Species; Temperature, water; Thoracosphaera heimii; Treatment; δ18O, calcite; δ18O, dissolved inorganic carbon  (1)
  • 2010-2014  (1)
Document type
Keywords
Publisher
Years
  • 2010-2014  (1)
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Van de Waal, Dedmer B; John, Uwe; Ziveri, Patrizia; Reichart, Gert-Jan; Hoins, Mirja; Sluijs, Appy; Rost, Björn (2013): Ocean Acidification Reduces Growth and Calcification in a Marine Dinoflagellate. PLoS ONE, 8(6), e65987, https://doi.org/10.1371/journal.pone.0065987
    Publication Date: 2024-05-27
    Description: Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate Thoracosphaera heimii. We observe a substantial reduction in growth rate, calcification and cyst stability of T. heimii under elevated pCO2. Furthermore, transcriptomic analyses reveal CO2 sensitive regulation of many genes, particularly those being associated to inorganic carbon acquisition and calcification. Stable carbon isotope fractionation for organic carbon production increased with increasing pCO2 whereas it decreased for calcification, which suggests interdependence between both processes. We also found a strong effect of pCO2 on the stable oxygen isotopic composition of calcite, in line with earlier observations concerning another T. heimii strain. The observed changes in stable oxygen and carbon isotope composition of T. heimii cysts may provide an ideal tool for reconstructing past seawater carbonate chemistry, and ultimately past pCO2. Although the function of calcification in T. heimii remains unresolved, this trait likely plays an important role in the ecological and evolutionary success of this species. Acting on calcification as well as growth, ocean acidification may therefore impose a great threat for T. heimii.
    Keywords: Abundance per volume; Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, particulate, production per cell; Carbon, organic, particulate, production per cell; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Category; Chromista; Cysts; Fractionation of calcite; Fractionation of organic carbon; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression; Growth/Morphology; Growth rate; Identification; Incubation duration; Laboratory experiment; Laboratory strains; Mediterranean Sea Acidification in a Changing Climate; MedSeA; Myzozoa; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at equilibrator temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon/particulate organic carbon ratio; Pelagos; pH; Phytoplankton; Potentiometric; Potentiometric titration; Protein name; Replicates; Salinity; Single species; Species; Temperature, water; Thoracosphaera heimii; Treatment; δ18O, calcite; δ18O, dissolved inorganic carbon
    Type: Dataset
    Format: text/tab-separated-values, 8222 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...