GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Abundance per area; Arctic Ocean; ARK-XXVII/3; Author(s); B_LANDER; Biomass, energy; Biomass, wet mass per area; Biomass as carbon, total per area; Body mass, mean; Bottom lander; Carbon production per area; Class; Date/Time of event; Depth, bathymetric; DEPTH, sediment/rock; Energy production per area; Event label; Family; Genus; Identification; Infraclass; Kingdom; Latitude of event; Location; Longitude of event; MG; Multiboxcorer; Order; Phylum; Polarstern; PS80/221-2; PS80/229-2; PS80/236-3; PS80/241-1; PS80/251-3; PS80/262-2; PS80/278-1; PS80/334-2; PS80/339-1; PS80/355-1; PS80/368-1; PS80/371-1; PS80 IceArc; Rank; Rate of production; see further details; Species; Subclass; Subfamily; Suborder; Subphylum; Superfamily; Superorder; Temperature, water  (1)
  • Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Arctica islandica; Baltic Sea; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcein mark; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Identification; Laboratory experiment; Mollusca; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Salinity; Salinity, standard deviation; Sample code/label; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation  (1)
  • Environment; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Species; Species code; SPP1158; Weddell_Sea_Shelf; Weddell Sea  (1)
  • 2010-2014  (3)
Document type
Keywords
Publisher
Years
  • 2010-2014  (3)
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Jacob, Ute; Thierry, Aaron; Brose, Ulrich; Arntz, Wolf E; Berg, Sofia; Brey, Thomas; Fetzer, Ingo; Jonsson, Tomas; Mintenbeck, Katja; Möllmann, Christian; Petchey, Owen L; Riede, Jens O; Dunne, Jennifer A (2011): The role of body size in complex food webs: A cold case. Advances in Ecological Research, 45, 181-223, https://doi.org/10.1016/B978-0-12-386475-8.00005-8
    Publication Date: 2023-10-28
    Description: Human-induced habitat destruction, overexploitation, introduction of alien species and climate change are causing species to go extinct at unprecedented rates, from local to global scales. There are growing concerns that these kinds of disturbances alter important functions of ecosystems. Our current understanding is that key parameters of a community (e.g. its functional diversity, species composition, and presence/absence of vulnerable species) reflect an ecological network's ability to resist or rebound from change in response to pressures and disturbances, such as species loss. If the food web structure is relatively simple, we can analyse the roles of different species interactions in determining how environmental impacts translate into species loss. However, when ecosystems harbour species-rich communities, as is the case in most natural systems, then the complex network of ecological interactions makes it a far more challenging task to perceive how species' functional roles influence the consequences of species loss. One approach to deal with such complexity is to focus on the functional traits of species in order to identify their respective roles: for instance, large species seem to be more susceptible to extinction than smaller species. Here, we introduce and analyse the marine food web from the high Antarctic Weddell Sea Shelf to illustrate the role of species traits in relation to network robustness of this complex food web. Our approach was threefold: firstly, we applied a new classification system to all species, grouping them by traits other than body size; secondly, we tested the relationship between body size and food web parameters within and across these groups and finally, we calculated food web robustness. We addressed questions regarding (i) patterns of species functional/trophic roles, (ii) relationships between species functional roles and body size and (iii) the role of species body size in terms of network robustness. Our results show that when analyzing relationships between trophic structure, body size and network structure, the diversity of predatory species types needs to be considered in future studies.
    Keywords: Environment; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Species; Species code; SPP1158; Weddell_Sea_Shelf; Weddell Sea
    Type: Dataset
    Format: text/tab-separated-values, 1464 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-10-04
    Keywords: Abundance per area; Arctic Ocean; ARK-XXVII/3; Author(s); B_LANDER; Biomass, energy; Biomass, wet mass per area; Biomass as carbon, total per area; Body mass, mean; Bottom lander; Carbon production per area; Class; Date/Time of event; Depth, bathymetric; DEPTH, sediment/rock; Energy production per area; Event label; Family; Genus; Identification; Infraclass; Kingdom; Latitude of event; Location; Longitude of event; MG; Multiboxcorer; Order; Phylum; Polarstern; PS80/221-2; PS80/229-2; PS80/236-3; PS80/241-1; PS80/251-3; PS80/262-2; PS80/278-1; PS80/334-2; PS80/339-1; PS80/355-1; PS80/368-1; PS80/371-1; PS80 IceArc; Rank; Rate of production; see further details; Species; Subclass; Subfamily; Suborder; Subphylum; Superfamily; Superorder; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1513 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stemmer, Kristina; Nehrke, Gernot; Brey, Thomas (2013): Elevated CO2 Levels do not Affect the Shell Structure of the Bivalve Arctica islandica from the Western Baltic. PLoS ONE, 8(7), e70106, https://doi.org/10.1371/journal.pone.0070106
    Publication Date: 2024-03-15
    Description: Shells of the bivalve Arctica islandica are used to reconstruct paleo-environmental conditions (e.g. temperature) via biogeochemical proxies, i.e. biogenic components that are related closely to environmental parameters at the time of shell formation. Several studies have shown that proxies like element and isotope-ratios can be affected by shell growth and microstructure. Thus it is essential to evaluate the impact of changing environmental parameters such as high pCO2 and consequent changes in carbonate chemistry on shell properties to validate these biogeochemical proxies for a wider range of environmental conditions. Growth experiments with Arctica islandica from the Western Baltic Sea kept under different pCO2 levels (from 380 to 1120 µatm) indicate no affect of elevated pCO2 on shell growth or crystal microstructure, indicating that A. islandica shows an adaptation to a wider range of pCO2 levels than reported for other species. Accordingly, proxy information derived from A. islandica shells of this region contains no pCO2 related bias.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Arctica islandica; Baltic Sea; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcein mark; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Identification; Laboratory experiment; Mollusca; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Salinity; Salinity, standard deviation; Sample code/label; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 1377 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...