GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley-Blackwell  (5)
  • 2010-2014  (5)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2012-09-21
    Description: Purpose: To evaluate time-resolved magnetic resonance angiography (TR-MRA) of the pulmonary venous circulation using the time-resolved angiography with interleaved stochastic trajectories (TWIST) method and compare it with the more commonly used conventional contrast-enhanced magnetic resonance angiography (CE-MRA) approach in atrial fibrillation patients referred for preablation pulmonary vein mapping. Materials and Methods: This study was approved by the Institutional Review Board. Twenty-six patients (15 males; age 59.6 ± 12.7 years) referred for preablation pulmonary vein mapping underwent both conventional CE-MRA and TR-MRA with TWIST. Imaging was performed on a 1.5 T (Magnetom Avanto, Siemens Healthcare, Erlangen, Germany) MRI scanner. Source partition and maximum intensity projection (MIP) images were evaluated retrospectively. For quantitative analysis, pulmonary vein ostium orthogonal dimensions were measured using double oblique multiplanar reformatting. The results were analyzed using paired t -tests, Lin's concordance correlation coefficient, and Bland–Altman plots. For qualitative analysis, both source partition images and MIP images were assessed by two observers (A.P. and M.G.). The presence of common ostiums or accessory veins was recorded and analyzed using unweighted Cohen's kappa. Pulmonary vein conspicuity was scored on a scale of 1–4 (1 = poor, 2 = fair, 3 = good, 4 = excellent) and analyzed using paired t -tests, intraclass correlation coefficients, and quadratic weighted kappa statistics. Results: Orthogonal venous diameters were comparable for both TR-MRA and conventional CE-MRA (1.34 ± 0.37 vs. 1.38 cm ± 0.36, respectively). Results of paired t -tests, Lin's concordance correlation coefficient, and Bland–Altman analysis revealed relatively close comparison between methods. The magnitude of the mean difference for any of the statistical comparisons did not exceed 0.10 cm. The visualization of variant pulmonary vein anatomy was very similar for both techniques. Agreement between techniques was determined to be “good” to “very good” (κ = 0.78–0.85). Conspicuity scores for each pulmonary vein were also very close. Paired t -tests, intraclass correlation coefficients, and quadratic weighted kappa statistics all revealed strong agreement between methods. Conclusion: TR-MRA using TWIST produces comparable anatomic images and pulmonary venous dimensions to the more widely used CE-MRA technique. Additionally, the TWIST technique improves arterio-venous separation, does not need exact bolus timing, requires less gadolinium, and gives additional information on vein perfusion. J. Magn. Reson. Imaging 2012;. © 2012 Wiley Periodicals, Inc.
    Print ISSN: 1053-1807
    Electronic ISSN: 1522-2586
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-05
    Description: Purpose The purpose of this study was to evaluate the utility of k-t parallel imaging for accelerating aortic four-dimensional (4D)-flow MRI. The aim was to systematically investigate the impact of different acceleration factors and number of coil elements on acquisition time, image quality and quantification of hemodynamic parameters. Methods k-t accelerated 4D-flow MRI (spatial/temporal resolution = 2.1 × 2.5 × 2.5 mm/40.0 ms) was acquired in 10 healthy volunteers with acceleration factors R = 3, 5, and 8 using 12- and 32-channel receiver coils. Results were compared with conventional parallel imaging (GRAPPA [generalized autocalibrating partial parallel acquisition], R = 2). Data analysis included radiological grading of three-dimensional blood flow visualization quality as well as quantification of blood flow, velocities and wall shear stress (WSS). Results k-t GRAPPA significantly reduced scan time by 28%, 54%, and 68%, for R = 3, 5, and 8, respectively, while maintaining image quality as demonstrated by overall similar image quality grading. Significant differences in peak WSS (diff 12ch = −5.9%, diff 32ch = 18.5%) and mean WSS (diff 32ch = 13.9%) were found at the descending aorta for both receiver coils for R = 5 (P WSS 〈 0.04). Peak velocity differed for R=8 at the aortic root (−7.4%) and descending aorta (−12%) with P peakVelo 〈 0.03. Conclusion k-t GRAPPA acceleration with a 12- or 32-channel receiver coil and an acceleration of 3 or 5 can compete with a standard GRAPPA R = 2 acceleration. Magn Reson Med, 2013. © 2013 Wiley Periodicals, Inc.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-11-22
    Description: Purpose To assess the impact of aortic valve morphology on aortic hemodynamics between normal tricuspid and congenitally anomalous aortic valves ranging from unicuspid to quadricuspid morphology. Materials and Methods Aortic three-dimensional (3D) blood flow was evaluated by 4D flow MRI in 14 healthy volunteers with normal trileaflet valves and 14 patients with unicuspid (n = 3), bicuspid (n = 9, 3 “true” bicuspid, 3 right–left (RL), 3 right-noncoronary (RN) leaflet fusion, and quadricuspid aortic valves (n = 2). Data analysis included the co-registered visualization of aortic valve morphology with systolic 3D blood flow. The influence of valve morphology on aortic hemodynamics was quantified by valve flow angle. Results All RL-bicuspid aortic valve (BAV) were associated with flow jets directed toward the right anterior aortic wall while RN-fusion and unicuspid valves resulted in flow jet patterns toward the right-posterior or posterior wall. Flow angles were clearly influenced by valve morphology (47° ± 10, 28° ± 2, 29° ± 18, 18° ± 12, 15° ± 2 for unicuspid, true BAV, RN-BAV, RL-BAV, quadricuspid valves) and increased compared with controls (7.2° ± 1.1, P  = 0.001). Conclusion Altered 3D aortic hemodynamics are impacted by the morphology of congenitally malformed aortic valves. J. Magn. Reson. Imaging 2013 . © 2013 Wiley Periodicals, Inc .
    Print ISSN: 1053-1807
    Electronic ISSN: 1522-2586
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-09-25
    Description: Purpose To test the feasibility of velocity distribution analysis for identifying altered three-dimensional (3D) flow characteristics in patients with aortic disease based on 4D flow MRI volumetric analysis. Methods Forty patients with aortic (Ao) dilation (mid ascending aortic diameter MAA = 40 ± 7 mm, age = 56 ± 17 years, 11 females) underwent cardiovascular MRI. Four groups were retrospectively defined: mild Ao dilation (n = 10; MAA 〈 35 mm); moderate Ao dilation (n = 10; 35 〈 MAA 〈 45 mm); severe Ao dilation (n = 10; MAA 〉 45 mm); Ao dilation+aortic stenosis AS (n = 10; MAA 〉 35 mm and peak velocity 〉 2.5 m/s). The 3D PC-MR angiograms were computed and used to obtain a 3D segmentation of the aorta which was divided into four segments: root, ascending aorta, arch, descending aorta. Radial chart displays were used to visualize multiple parameters representing segmental changes in the 3D velocity distribution associated with aortic disease. Results Changes in the velocity field and geometry between cohorts resulted in distinct hemodynamic patterns for each aortic segment. Disease progression from mild to Ao dilation + AS resulted in significant differences ( P  〈 0.05) in flow parameters across cohorts and increased radial chart size for root and ascending aorta segments by 146% and 99%, respectively. Conclusion Volumetric 4D velocity distribution analysis has the potential to identify characteristic changes in regional blood flow patterns in patients with aortic disease. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-19
    Description: Purpose To compute cohort-averaged wall shear stress (WSS) maps in the thoracic aorta of patients with aortic dilatation or valvular stenosis and to detect abnormal regional WSS. Methods Systolic WSS vectors, estimated from four-dimensional flow MRI data, were calculated along the thoracic aorta lumen in 10 controls, 10 patients with dilated aortas, and 10 patients with aortic valve stenosis. Three-dimensional segmentations of each aorta were coregistered by group and used to create a cohort-specific aortic geometry. The WSS vectors of each subject were interpolated onto the corresponding cohort-specific geometry to create cohort-averaged WSS maps. A Wilcoxon rank sum test was used to generate aortic P -value maps ( P 〈0.05) representing regional relative WSS differences between groups. Results Cohort-averaged systolic WSS maps and P -value maps were successfully created for all cohorts and comparisons. The dilation cohort showed significantly lower WSS on 7% of the ascending aorta surface, whereas the stenosis cohort showed significantly higher WSS on 34% of the ascending aorta surface. Conclusions The findings of this study demonstrated the feasibility of generating cohort-averaged WSS maps for the visualization and identification of regionally altered WSS in the presence of disease, compared with healthy controls. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...