GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (2)
  • 2010-2014  (2)
Material
Publisher
  • Wiley  (2)
Language
Years
  • 2010-2014  (2)
Year
  • 1
    In: Ecohydrology, Wiley, Vol. 7, No. 6 ( 2014-12), p. 1524-1533
    Abstract: Despite continued studies on the ecology and physiology of strangling hemiepiphytes, there is little quantitative information about the variations in source‐water uptake by these species under different growth phases. In this study, the water acquisition patterns of a hemiepiphyte, Ficus tinctoria , is investigated in relation to growth phase (epiphytic, transitional and terrestrial) and season (foggy, hot‐dry and rainy). Stable isotope compositions of water in xylem, soil, canopy humus, fog and rainfall were sampled on seasonally distinct dates, and soil water content and leaf carbon isotope composition were measured in order to determine the proportion of different water sources. Results indicated that F .  tinctoria displayed a high degree of plasticity in source‐water acquisition associated with the growth‐phase transition from purely canopy‐rooted epiphyte to transitional plant to terrestrial tree. During the foggy season and the hot‐dry season, epiphytes utilized a combination of recently received rainwater (82–89%) and fog water (11–18%) present in canopy humus soil, whereas terrestrial trees exclusively depended on shallow and deep terrestrial soil water and exhibited marked flexibility in depth of soil water uptake. Transitional‐phase plants relied predominantly on shallow soil water (79–86%) and extracted only a small fraction of canopy humus water (14–21%). During the rainy season, epiphytes relied almost exclusively on recent rainwater (96%) and had a negligible water uptake from fog, whereas trees extracted their water primarily from the shallow soil and less from the deep soil. Plants in transitional‐phase drew a considerable fraction of water from canopy humus soil. This plasticity of source‐water uptake to cope with radical changes in rooting environment is likely the key feature enabling hemiepiphytic species to thrive and successfully establish in the tropical rainforests. Copyright © 2014 John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 1936-0584 , 1936-0592
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2418105-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Ecohydrology, Wiley, Vol. 7, No. 4 ( 2014-08), p. 1234-1244
    Abstract: The rubber tree ( Hevea brasiliensis ) has been extensively cultivated in Xishuangbanna, southwest (SW) China. It shows strong synchronicity for flushing and shedding, displaying a very different phenology to the native vegetation. However, little is known about the water‐use patterns of the plant in this area. We assessed seasonal water‐use strategies of rubber trees over the course of a rainy/dry season cycle. Stable isotope compositions of water in xylem, soil, rain and groundwater were sampled on seasonally distinct dates, and soil water content, root distribution and leaf water potential on sunny days were measured in order to determine the proportion of water derived from different soil layers. Midday leaf water potential of rubber trees was relatively stable throughout the year and did not drop significantly during the late dry season, displaying isohydric behaviour. Soil and stem water isotope signatures along with rooting distributional patterns revealed that rubber trees extracted their water mostly from the top 30 cm and less from below 70 cm of the soil profile during the late rainy season when soil water was plentiful. During the late dry season, as the moisture in the middle soil layers (30–70 cm) was gradually depleted, the depth of water uptake shifted to deeper soil levels. Model calculations showed that the proportion of water uptake from the shallow soil layer ( 〈 30 cm) increased markedly after the most recent rainfall in the late dry season and the early rainy season (varying between 65% and 71%), indicating significant plasticity in sources of water uptake in this dimorphic‐rooted species. This ability to take up a large proportion of shallow soil water after rainfall is likely the key feature enabling rubber trees to thrive through the period of greatest water demand. Our results suggest that rubber trees are able to adjust the allocation of resources and thus acclimate to the spatiotemporal changes to water conditions in the soil profile. Copyright © 2013 John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 1936-0584 , 1936-0592
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2418105-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...