GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-05-02
    Description: CC chemokine ligand-2 (CCL2)/monocyte chemoattractant protein (MCP)-1 expression is upregulated during pulmonary inflammation, and the CCL2-CCR2 axis plays a critical role in leukocyte recruitment and promotion of host defense against infection. The role of CCL2 in mediating macrophage subpopulations in the pathobiology of noninfectious lung injury is unknown. The goal of this study was to examine the role of CCL2 in noninfectious acute lung injury. Our results show that lung-specific overexpression of CCL2 protected mice from bleomycin-induced lung injury, characterized by significantly reduced mortality, reduced neutrophil accumulation, and decreased accumulation of the inflammatory mediators IL-6, CXCL2 (macrophage inflammatory protein-2), and CXCL1 (keratinocyte-derived chemokine). There were dramatic increases in the recruitment of myosin heavy chain (MHC) II IA/IE int CD11c int cells, exudative macrophages, and dendritic cells in Ccl2 transgenic mouse lungs both at baseline and after bleomycin treatment compared with levels in wild-type mice. We further demonstrated that MHCII IA/IE int CD11c int cells engulfed apoptotic cells during acute lung injury. Our data suggested a previously undiscovered role for MHCII IA/IE int CD11c int cells in apoptotic cell clearance and inflammation resolution.
    Print ISSN: 1040-0605
    Electronic ISSN: 1522-1504
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-10-16
    Description: There is a global epidemic of obesity, and obesity is known to inhibit AMP-activated protein kinase (AMPK) activity and impairs myogenesis. Myogenin mediates the fusion of myoblasts into myotubes, a critical step in myogenesis. We observed that inhibition of AMPKα1 downregulates myogenin expression and myogenesis, but the underlying mechanisms are unclear. We postulated that AMPK regulates myogenin expression through phosphorlytion of histone deacetylase 5 (HDAC5). In C2C12 cells, HDAC5 knockdown increased while HDAC5 stablization by MC1568 reduced myogenin expression. Consistently, using luciferase assay, we observed that myogenin promoter activity was negatively regulated by HDAC5. Using RNA interference and primary myoblasts prepared from wild-type and AMPKα1 knockout mice, we further demonstrate that AMPKα1 regulates HDAC5 phosphorylation at Ser 259 and 498. Mutation of these two Ser to Ala in HDAC5 abolished the regulatory role of AMPKα1 on myogenin expression, clearly showing the necessity of these phosphorylation sites in mediating myogenin expression. In aggregate, these data show that AMPK inhibition downregulates myogenin transcription and myogenesis through phosphorylation of HDAC5, mediated mainly by AMPKα1. These data demonstrate that AMPK is a key molecular target for promoting myogenesis and muscular regeneration. Because drugs activating AMPK activity, such as metformin, are widely available, our finding has critical clinical implications to ensure proper muscle development and regeneration in obese subjects and under other pathophysiological conditions where AMPK activity is attenuated.
    Print ISSN: 0363-6143
    Electronic ISSN: 1522-1563
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...