GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2012-08-14
    Description: Astrogliosis is induced by neuronal damage and is also a pathological feature of the major aging-related neurodegenerative disorders. The mechanisms that control the cascade of astrogliosis have not been well established. In a previous study, we identified a novel androgen receptor (AR)-interacting protein, p44/WDR77, that plays a critical role in the proliferation and differentiation of prostate epithelial cells. In the present study, we found that deletion of the p44/WDR77 gene caused premature death with dramatic astrogliosis in mouse brain. We further found that p44/WDR77 is expressed in astrocytes and that loss of p44/WDR77 expression in astrocytes leads to growth arrest and astrogliosis. The astrocyte activation induced by deletion of the p44/WDR77 gene was associated with upregulation of p21 Cip1 expression and NF-B activation. Silencing p21 Cip1 or NF-B p65 expression with short hairpin RNA (shRNA) abolished astrocyte activation and rescued the astrocyte growth inhibition induced by deletion of the p44/WDR77 gene. Our results reveal a novel role for p44/WDR77 in the control of astrocyte activation through p21 Cip1 and NF-B signaling.
    Print ISSN: 0270-7306
    Electronic ISSN: 1098-5549
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-04-11
    Description: Haloferax mediterranei is able to accumulate the bioplastic poly(3-hydroxybutyrate- co -3-hydroxyvalerate) (PHBV) with more than 10 mol% 3-hydroxyvalerate (3HV) from unrelated carbon sources. However, the pathways that produce propionyl coenzyme A (propionyl-CoA), an important precursor of 3HV monomer, have not yet been determined. Bioinformatic analysis of H. mediterranei genome indicated that this strain uses multiple pathways for propionyl-CoA biosynthesis, including the citramalate/2-oxobutyrate pathway, the aspartate/2-oxobutyrate pathway, the methylmalonyl-CoA pathway, and a novel 3-hydroxypropionate pathway. Cofeeding of pathway intermediates and inactivating pathway-specific genes supported that these four pathways were indeed involved in the biosynthesis of 3HV monomer. The novel 3-hydroxypropionate pathway that couples CO 2 assimilation with PHBV biosynthesis was further confirmed by analysis of 13 C positional enrichment in 3HV. Notably, 13 C metabolic flux analysis showed that the citramalate/2-oxobutyrate pathway (53.0% flux) and the 3-hydroxypropionate pathway (30.6% flux) were the two main generators of propionyl-CoA from glucose. In addition, genetic perturbation on the transcriptome of the phaEC mutant (deficient in PHBV accumulation) revealed that a considerable number of genes in the four propionyl-CoA synthetic pathways were significantly downregulated. We determined for the first time four propionyl-CoA-supplying pathways for PHBV production in haloarchaea, particularly including a new 3-hydroxypropionate pathway. These results would provide novel strategies for the production of PHBV with controllable 3HV molar fraction.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-06-07
    Description: Microbial solar cells (MSCs) are microbial fuel cells (MFCs) that generate their own oxidant and/or fuel through photosynthetic reactions. Here, we present electrochemical analyses and biofilm 16S rRNA gene profiling of biocathodes of sediment/seawater-based MSCs inoculated from the biocathode of a previously described sediment/seawater-based MSC. Electrochemical analyses indicate that for these second-generation MSC biocathodes, catalytic activity diminishes over time if illumination is provided during growth, whereas it remains relatively stable if growth occurs in the dark. For both illuminated and dark MSC biocathodes, cyclic voltammetry reveals a catalytic-current–potential dependency consistent with heterogeneous electron transfer mediated by an insoluble microbial redox cofactor, which was conserved following enrichment of the dark MSC biocathode using a three-electrode configuration. 16S rRNA gene profiling showed Gammaproteobacteria , most closely related to Marinobacter spp., predominated in the enriched biocathode. The enriched biocathode biofilm is easily cultured on graphite cathodes, forms a multimicrobe-thick biofilm (up to 8.2 μm), and does not lose catalytic activity after exchanges of the reactor medium. Moreover, the consortium can be grown on cathodes with only inorganic carbon provided as the carbon source, which may be exploited for proposed bioelectrochemical systems for electrosynthesis of organic carbon from carbon dioxide. These results support a scheme where two distinct communities of organisms develop within MSC biocathodes: one that is photosynthetically active and one that catalyzes reduction of O 2 by the cathode, where the former partially inhibits the latter. The relationship between the two communities must be further explored to fully realize the potential for MSC applications.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-04-10
    Description: Picorna-like viruses in the Picornavirales order are a large group of positive-strand RNA viruses that include numerous important pathogens for plants, insects, and humans. In these viruses, nonstructural protein 2C is one of the most conserved proteins and contains ATPase activity and putative RNA helicase activity. Here we expressed 2C protein of Ectropis obliqua picorna-like virus (EoV; genus Iflavirus , family Iflaviridae , order Picornavirales ) in a eukaryotic expression system and determined that EoV 2C displays ATP-independent nucleic acid helix destabilizing and strand annealing acceleration activity in a concentration-dependent manner, indicating that this picornaviral 2C is more like an RNA chaperone than like the previously predicted RNA helicase. Our further characterization of EoV 2C revealed that divalent metal ions, such as Mg 2+ and Zn 2+ , inhibit 2C-mediated helix destabilization to different extents. Moreover, we determined that EoV 2C also contains ATPase activity like that of other picornaviral 2C proteins and further assessed the functional relevance between its RNA chaperone-like and ATPase activities using mutational analysis as well as their responses to Mg 2+ . Our data show that, when one of the two 2C activities was dramatically inhibited or almost abolished, the other activity could remain intact, showing that the RNA chaperone-like and ATPase activities of EoV 2C can be functionally separated. This report reveals that a picorna-like virus 2C protein displays RNA helix destabilizing and strand annealing acceleration activity, which may be critical for picornaviral replication and pathogenesis, and should foster our understanding of picorna-like viruses and viral RNA chaperones.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-04-24
    Description: We hypothesized that nucleophosmin (NPM), a nucleolar phosphoprotein, is critical for Bax-mediated cell death. To test this hypothesis, Bax activation was induced by metabolic stress. During stress, nucleolar NPM translocated into the cytosol, NPM-Bax complexes formed, and both NPM and Bax accumulated in mitochondria. Expression of a cytosol-restricted NPM mutant (NPM-NLS), but not a nucleus-restricted NPM mutant, increased NPM-Bax complex formation, mitochondrial NPM and Bax accumulation, mitochondrial membrane injury, caspase 3 activation, and ischemia-induced cell death. Coexpression of NPM-NLS with constitutively active Bax mutants caused nearly universal cell death in the absence of metabolic stress, whereas expression of active Bax or NPM-NLS alone did not. A Bax peptide that disrupts NPM-Bax interaction significantly reduced cell death caused by exposure to metabolic inhibitors in vitro and preserved kidney function after ischemia in vivo . Thus, NPM-Bax interaction enhances mitochondrial Bax accumulation, organelle injury, and cell death. NPM-Bax complex formation is a novel target for preventing ischemic tissue injury.
    Print ISSN: 0270-7306
    Electronic ISSN: 1098-5549
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-04-25
    Description: Highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 have caused numerous outbreaks in diverse poultry species and rising numbers of human infections. Both HPAIV subtypes support a growing concern of a pandemic outbreak, specifically via the avian-human link. Natural reassortment of both HPAIV subtypes is a possible event with unpredictable outcome for virulence and host specificity of the progeny virus for avian and mammalian species. NS reassortment of H5N1 HPAIV viruses in the background of A/FPV/Rostock/1934 (H7N1) HPAIV has been shown to change virus replication kinetics and host cell responses in mammalian cells. However, not much is known about the virus-host interaction of such viruses in avian species. In the present study, we show that the NS segment of A/Vietnam/1203/2004 (FPV NS VN, H5N1) HPAIV significantly altered the characteristics of the H7 prototype HPAIV in tracheal organ cultures (TOC) of chicken and turkey in vitro , with decreased replication efficiency accompanied by increased induction of type I interferon (IFN) and apoptosis. Furthermore, species-specific differences between chicken and turkey were demonstrated. Interestingly, NS-reassortant FPV NS VN showed an overall highly pathogenic phenotype, with increased virulence and replication potential compared to the wild-type virus after systemic infection of chicken and turkey embryos. Our data demonstrate that single reassortment of an H5-type NS into an H7-type HPAIV significantly changed virus replication abilities and influenced the avian host cell response without prior adaptation.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-09-10
    Description: Cytophaga hutchinsonii is a widely distributed cellulolytic bacterium in the phylum Bacteroidetes . It can digest crystalline cellulose rapidly without free cellulases or cellulosomes. The mechanism of its cellulose utilization remains a mystery. We developed an efficient method based on a linear DNA double-crossover and FLP-FRT recombination system to obtain unmarked deletions of both single genes and large genomic fragments in C. hutchinsonii . Unmarked deletion of CHU _ 3237 ( porU ), an ortholog of the C-terminal signal peptidase of a type IX secretion system (T9SS), resulted in defects in colony spreading, cellulose degradation, and protein secretion, indicating that it is a component of the T9SS and that T9SS plays an important role in cellulose degradation by C. hutchinsonii . Furthermore, deletions of four large genomic fragments were obtained using our method, and the sizes of the excised fragments varied from 9 to 19 kb, spanning from 6 to 22 genes. The customized FLP-FRT method provides an efficient tool for more rapid progress in the cellulose degradation mechanism and other physiological aspects of C. hutchinsonii .
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-10-18
    Description: Differentiation of B cells into Ab-secreting cells induces changes in gene transcription, IgH RNA processing, the unfolded protein response (UPR), and cell architecture. The transcription elongation factor eleven nineteen lysine-rich leukemia gene (ELL2) stimulates the processing of the secreted form of the IgH mRNA from the H chain gene. Mice ( mus musculus ) with the ELL2 gene floxed in either exon 1 or exon 3 were constructed and crossed to CD19-driven cre/CD19 + . The B cell–specific ELL2 conditional knockouts (cKOs; ell2 loxp/loxp CD19 cre/+ ) exhibit curtailed humoral responses both in 4-hydroxy-3-nitrophenyl acetyl–Ficoll and in 4-hydroxy-3-nitrophenyl acetyl–keyhole limpet hemocyanin immunized animals; recall responses were also diminished. The number of immature and recirculating B cells in the bone marrow is increased in the cKOs, whereas plasma cells in spleen are reduced relative to control animals. There are fewer IgG1 Ab-producing cells in the bone marrow of cKOs. LPS ex vivo–stimulated B220 lo CD138 + cells from ELL2-deficient mouse spleens are 4-fold less abundant than from control splenic B cells; have a paucity of secreted IgH; and have distended, abnormal-appearing endoplasmic reticulum. IRE1α is efficiently phosphorylated, but the amounts of Ig , ATF6, BiP, Cyclin B2, OcaB (BOB1, Pou2af1), and XBP1 mRNAs, unspliced and spliced, are severely reduced in ELL2-deficient cells. ELL2 enhances the expression of BCMA (also known as Tnfrsf17), which is important for long-term survival. Transcription yields from the cyclin B2 and the canonical UPR promoter elements are upregulated by ELL2 cDNA. Thus, ELL2 is important for many aspects of Ab secretion, XBP1 expression, and the UPR.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-07-11
    Description: The Myc oncoprotein is considered a master regulator of gene transcription by virtue of its ability to modulate the expression of a large percentage of all genes. However, mechanisms that direct Myc's recruitment to DNA and target gene selection to elicit specific cellular functions have not been well elucidated. Here, we report that the Pin1 prolyl isomerase enhances recruitment of serine 62-phosphorylated Myc and its coactivators to select promoters during gene activation, followed by promoting Myc's release associated with its degradation. This facilitates Myc's activation of genes involved in cell growth and metabolism, resulting in enhanced proproliferative activity, even while controlling Myc levels. In cancer cells with impaired Myc degradation, Pin1 still enhances Myc DNA binding, although it no longer facilitates Myc degradation. Thus, we find that Pin1 and Myc are cooverexpressed in cancer, and this drives a gene expression pattern that we show is enriched in poor-outcome breast cancer subtypes. This study provides new insight into mechanisms regulating Myc DNA binding and oncogenic activity, it reveals a novel role for Pin1 in the regulation of transcription factors, and it elucidates a mechanism that can contribute to oncogenic cooperation between Pin1 and Myc.
    Print ISSN: 0270-7306
    Electronic ISSN: 1098-5549
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...