GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (2)
  • 2010-2014  (2)
Material
Publisher
  • Oxford University Press (OUP)  (2)
Language
Years
  • 2010-2014  (2)
Year
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2013
    In:  G3 Genes|Genomes|Genetics Vol. 3, No. 7 ( 2013-07-01), p. 1085-1093
    In: G3 Genes|Genomes|Genetics, Oxford University Press (OUP), Vol. 3, No. 7 ( 2013-07-01), p. 1085-1093
    Abstract: Genotype-by-environment interaction (GxE) has been widely reported in dairy cattle. One way to analyze GxE is to apply reaction norm models. The first derivative of a reaction norm is the environmental sensitivity (ES). In the present study we conducted a large-scale, genome-wide association analysis to identify single-nucleotide polymorphisms (SNPs) that affect general production (GP) and ES of milk traits in the German Holstein population. Sire estimates for GP and for ES were calculated from approximately 13 million daughter records by the use of linear reaction norm models. The daughters were offspring from 2297 sires. Sires were genotyped for 54k SNPs. The environment was defined as the average milk energy yield performance of the herds at the time during which the daughter observations were recorded. The sire estimates were used as observations in a genome-wide association analysis, using 1797 sires. Significant SNPs were confirmed in an independent validation set (500 sires of the same population). To separate GxE scaling and other GxE effects, the observations were log-transformed in some analyses. Results from the reaction norm model revealed GxE effects. Numerous significant SNPs were validated for both GP and ES. Many SNPs that affect GP also affect ES. We showed that ES of milk traits is a typical quantitative trait, genetically controlled by many genes with small effects and few genes with larger effect. A log-transformation of the observation resulted in a reduced number of validated SNPs for ES, pointing to genes that not only caused scaling GxE effects. The results will have implications for breeding for robustness in dairy cattle.
    Type of Medium: Online Resource
    ISSN: 2160-1836
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2013
    detail.hit.zdb_id: 2629978-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Genetics, Oxford University Press (OUP), Vol. 193, No. 2 ( 2013-02-01), p. 431-442
    Abstract: The estimation of dominance effects requires the availability of direct phenotypes, i.e., genotypes and phenotypes in the same individuals. In dairy cattle, classical QTL mapping approaches are, however, relying on genotyped sires and daughter-based phenotypes like breeding values. Thus, dominance effects cannot be estimated. The number of dairy bulls genotyped for dense genome-wide marker panels is steadily increasing in the context of genomic selection schemes. The availability of genotyped cows is, however, limited. Within the current study, the genotypes of male ancestors were applied to the calculation of genotype probabilities in cows. Together with the cows’ phenotypes, these probabilities were used to estimate dominance effects on a genome-wide scale. The impact of sample size, the depth of pedigree used in deriving genotype probabilities, the linkage disequilibrium between QTL and marker, the fraction of variance explained by the QTL, and the degree of dominance on the power to detect dominance were analyzed in simulation studies. The effect of relatedness among animals on the specificity of detection was addressed. Furthermore, the approach was applied to a real data set comprising 470,000 Holstein cows. To account for relatedness between animals a mixed-model two-step approach was used to adjust phenotypes based on an additive genetic relationship matrix. Thereby, considerable dominance effects were identified for important milk production traits. The approach might serve as a powerful tool to dissect the genetic architecture of performance and functional traits in dairy cattle.
    Type of Medium: Online Resource
    ISSN: 1943-2631
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2013
    detail.hit.zdb_id: 1477228-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...