GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-10-10
    Description: Although most deoxyribonucleic acid (DNA) lesions are accurately repaired before replication, replication across unrepaired lesions is the main source of point mutations. The lesion tolerance processes, which allow damaged DNA to be replicated, entail two branches, error-prone translesion synthesis (TLS) and error-free damage avoidance (DA). While TLS pathways are reasonably well established, DA pathways are poorly understood. The fate of a replication-blocking lesion is generally explored by means of plasmid-based assays. Although such assays represent efficient tools to analyse TLS, we show here that plasmid-borne lesions are inappropriate models to study DA pathways due to extensive replication fork uncoupling. This observation prompted us to develop a method to graft, site-specifically, a single lesion in the genome of a living cell. With this novel assay, we show that in Escherichia coli DA events massively outweigh TLS events and that in contrast to plasmid, chromosome-borne lesions partially require RecA for tolerance.
    Keywords: Repair, Replication
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-20
    Description: DNA damage tolerance pathways allow cells to duplicate their genomes despite the presence of replication blocking lesions. Cells possess two major tolerance strategies, namely translesion synthesis (TLS) and homology directed gap repair (HDGR). TLS pathways involve specialized DNA polymerases that are able to synthesize past DNA lesions with an intrinsic risk of causing point mutations. In contrast, HDGR pathways are essentially error-free as they rely on the recovery of missing information from the sister chromatid by RecA-mediated homologous recombination. We have investigated the genetic control of pathway choice between TLS and HDGR in vivo in Escherichia coli . In a strain with wild type RecA activity, the extent of TLS across replication blocking lesions is generally low while HDGR is used extensively. Interestingly, recA alleles that are partially impaired in D-loop formation confer a decrease in HDGR and a concomitant increase in TLS. Thus, partial defect of RecA's capacity to invade the homologous sister chromatid increases the lifetime of the ssDNA.RecA filament, i.e. the ‘SOS signal’. This increase favors TLS by increasing both the TLS polymerase concentration and the lifetime of the TLS substrate, before it becomes sequestered by homologous recombination. In conclusion, the pathway choice between error-prone TLS and error-free HDGR is controlled by the efficiency of homologous recombination.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-04-19
    Description: Background Only patients with wild-type (WT) KRAS tumors benefit from anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (Mabs) in metastatic colorectal cancer (mCRC). Pyrosequencing is now widely used for the determination of KRAS mutation burden and a conservative cut-off point of 10% has been defined. Up until now, the impact of low-frequency KRAS mutations (〈10%) on the response to anti-EGFR Mabs has yet to be evaluated. Patients and methods Tumors from patients receiving anti-EGFR Mabs based on a WT genotype for KRAS , as determined using direct sequencing, have been retrospectively analyzed by pyrosequencing. Patients were categorized as WT (no KRAS mutation) or low-frequency mutation when KRAS mutation was 〈10% ( KRAS low MT). Results A total of 168 patients treated by anti-EGFR Mabs for mCRC were analyzed. According to pyrosequencing, 138 tumors remained KRAS WT, while 30 tumors were KRAS low MT. In the KRAS low MT and KRAS WT groups, the response rates were 6.7% and 37.0%, respectively, while stabilization amounted to 23.3% versus 32.6% and progression to 70% versus 29% ( P 〈 0.01). Progression-free survival (PFS) was 2.7 ± 0.5 months for KRAS low MT and was 6.0 ± 0.3 months for KRAS WT ( P 〈 0.01). Conclusions These results appear to validate consideration of low-frequency KRAS mutation tumors as positive, and justify a large-scale prospective study.
    Print ISSN: 0923-7534
    Electronic ISSN: 1569-8041
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-06-29
    Description: Bacteria of the genus Xenorhabdus are symbionts of soil entomopathogenic nematodes of the genus Steinernema . This symbiotic association constitutes an insecticidal complex active against a wide range of insect pests. Unlike other Xenorhabdus species, Xenorhabdus poinarii is avirulent when injected into insects in the absence of its nematode host. We sequenced the genome of the X. poinarii strain G6 and the closely related but virulent X. doucetiae strain FRM16. G6 had a smaller genome (500–700 kb smaller) than virulent Xenorhabdus strains and lacked genes encoding potential virulence factors (hemolysins, type 5 secretion systems, enzymes involved in the synthesis of secondary metabolites, and toxin–antitoxin systems). The genomes of all the X. poinarii strains analyzed here had a similar small size. We did not observe the accumulation of pseudogenes, insertion sequences or decrease in coding density usually seen as a sign of genomic erosion driven by genetic drift in host-adapted bacteria. Instead, genome reduction of X. poinarii seems to have been mediated by the excision of genomic blocks from the flexible genome, as reported for the genomes of attenuated free pathogenic bacteria and some facultative mutualistic bacteria growing exclusively within hosts. This evolutionary pathway probably reflects the adaptation of X. poinarii to specific host.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-01-25
    Description: In deciduous trees, shoot development in early spring is assumed to be achieved mainly at the expense of nitrogen (N) stores. Indeed, the possible compensation for poor autumn N storage by early spring N uptake has been little studied. We therefore determined the dynamics of spring N uptake in relation to spring N supply, carbon and N storage and shoot development. Young peach trees ( Prunus persica L. Batsch, cv. ‘GF305 ’ ) were raised outdoors in a hydroponic set-up during the spring and summer, with an excessive N supply. During the autumn, half of the trees were then N limited. The following spring, the N supply remained either high or low, or changed from high to low or low to high. Between 6 March and 13 May, N uptake was measured automatically on an hourly basis, while shoot growth was monitored once a week. These in situ measurements were completed by three destructive harvests to assess organ composition in N and total non-structural carbohydrates (TNC). Until the end of April, N uptake was dependent on the autumn N treatment, being higher in trees that had been N limited in the autumn. Total non-structural carbohydrate mobilization was also higher in those trees that had lost at least 17 g TNC by 24 April, while TNC levels in non-limited trees remained stable or even rose. Shoot development, estimated by the number of elongated axes and leaves per axis, was also slightly delayed by an N limitation in autumn. After 24 April, N uptake rates increased notably under all treatments and was determined by the spring N supply. In trees receiving a high N supply in the spring, the uptake rates also displayed marked short-term variations. That reduced the differences between treatments and by 13 May no differences could be evidenced between the trees in terms of organ biomass and TNC and N contents, whatever the treatment. We concluded that in the early spring, N uptake may compensate for a deficit of N storage insofar as large quantities of TNC can be mobilized for that purpose.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-03
    Description: Background: Deficient mismatch repair (dMMR) colon cancer (CC) is reportedly resistant to 5-fluorouracil (5FU) adjuvant chemotherapy while preliminary data suggest chemosensitivity to oxaliplatin. We assessed the efficacy of fluoropyrimidine with and without oxaliplatin in a large cohort of dMMR CC patients. Methods: This retrospective multicenter study included all consecutive patients who underwent curative surgical resection for stage II or III dMMR CC between 2000 and 2011. Prognostic factors were analyzed using Cox models, and hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated. All statistical tests were two-sided. Results: A total of 433 dMMR CC patients were included (56.8% stage II, 43.2% stage III). Mean follow-up was 47.0 months. The patients received surgery alone (n = 263) or surgery plus adjuvant chemotherapy consisting of fluoropyrimidine with (n = 119) or without (n = 51) oxaliplatin. Adjuvant chemotherapy was administered to 16.7% of stage II and 69.0% of stage III CC patients. As compared with surgery alone, adjuvant oxaliplatin-based chemotherapy improved disease-free survival (DFS) in multivariable analysis (HR = 0.35, 95% CI = 0.19 to 0.65, P 〈 .001), contrary to adjuvant fluoropyrimidine alone (HR = 0.73, 95% CI = 0.36 to 1.49, P = .38). In the subgroup analysis, the DFS benefit of oxaliplatin-based chemotherapy was statistically significant in multivariable analysis only in stage III (HR = 0.41, 95% CI = 0.19 to 0.87, P = .02). Conclusion: This study supports the use of adjuvant chemotherapy with fluoropyrimidine plus oxaliplatin in stage III dMMR CC.
    Electronic ISSN: 1460-2105
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-05-03
    Description: Nucleoporins are evolutionary conserved proteins mainly involved in the constitution of the nuclear pores and trafficking between the nucleus and cytoplasm, but are also increasingly viewed as main actors in chromatin dynamics and intra-nuclear mitotic events. Here, we determined the cellular localization of the nucleoporin Mlp2 in the ‘divergent’ eukaryotes Leishmania major and Trypanosoma brucei . In both protozoa, Mlp2 displayed an atypical localization for a nucleoporin, essentially intranuclear, and preferentially in the periphery of the nucleolus during interphase; moreover, it relocated at the mitotic spindle poles during mitosis. In T. brucei , where most centromeres have been identified, TbMlp2 was found adjacent to the centromeric sequences, as well as to a recently described unconventional kinetochore protein, in the periphery of the nucleolus, during interphase and from the end of anaphase onwards. TbMlp2 and the centromeres/kinetochores exhibited a differential migration towards the poles during mitosis. RNAi knockdown of TbMlp2 disrupted the mitotic distribution of chromosomes, leading to a surprisingly well-tolerated aneuploidy. In addition, diploidy was restored in a complementation assay where LmMlp2, the orthologue of TbMlp2 in Leishmania , was expressed in TbMlp2-RNAi-knockdown parasites. Taken together, our results demonstrate that Mlp2 is involved in the distribution of chromosomes during mitosis in trypanosomatids.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2016-07-23
    Description: The American Joint Committee on Cancer/Union Internationale Contre le Cancer (AJCC/UICC) tumor, nodes, metastasis (TNM) classification system based on tumor features is used for prognosis estimation and treatment recommendations in most cancers. However, the clinical outcome can vary significantly among patients within the same tumor stage and TNM classification does not predict response to therapy. Therefore, many efforts have been focused on the identification of new markers. Multiple tumor cell-based approaches have been proposed but very few have been translated into the clinic. The recent demonstration of the essential role of the immune system in tumor progression has allowed great advances in the understanding of this complex disease and in the design of novel therapies. The analysis of the immune infiltrate by imaging techniques in large patient cohorts highlighted the prognostic impact of the in situ immune cell infiltrate in tumors. Moreover, the characterization of the immune infiltrates (e.g. type, density, distribution within the tumor, phenotype, activation status) in patients treated with checkpoint-blockade strategies could provide information to predict the disease outcome. In colorectal cancer, we have developed a prognostic score (‘Immunoscore’) that takes into account the distribution of the density of both CD3 + lymphocytes and CD8 + cytotoxic T cells in the tumor core and the invasive margin that could outperform TNM staging. Currently, an international retrospective study is under way to validate the Immunoscore prognostic performance in patients with colon cancer. The use of Immunoscore in clinical practice could improve the patients’ prognostic assessment and therapeutic management.
    Print ISSN: 0953-8178
    Electronic ISSN: 1460-2377
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-06-28
    Description: Bacteria use the global bipolarization of their chromosomes into replichores to control the dynamics and segregation of their genome during the cell cycle. This involves the control of protein activities by recognition of specific short DNA motifs whose orientation along the chromosome is highly skewed. The KOPS motifs act in chromosome segregation by orienting the activity of the FtsK DNA translocase towards the terminal replichore junction. KOPS motifs have been identified in -Proteobacteria and in Bacillus subtilis as closely related G-rich octamers. We have identified the KOPS motif of Lactococcus lactis , a model bacteria of the Streptococcaceae family harbouring a compact and low GC% genome. This motif, 5'-GAAGAAG-3, was predicted in silico using the occurrence and skew characteristics of known KOPS motifs. We show that it is specifically recognized by L. lactis FtsK in vitro and controls its activity in vivo . L. lactis KOPS is thus an A-rich heptamer motif. Our results show that KOPS-controlled chromosome segregation is conserved in Streptococcaceae but that KOPS may show important variation in sequence and length between bacterial families. This suggests that FtsK adapts to its host genome by selecting motifs with convenient occurrence frequencies and orientation skews to orient its activity.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...