GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-05-23
    Description: This paper compares the greenhouse gas (GHG) emissions of natural gas (NG)- based fuels to the GHG emissions of electric vehicles (EVs) powered with NG-to-electricity in China. A life-cycle model is used to account for full fuel cycle and use-phase emissions, as well as vehicle cycle and battery manufacturing. The reduction of life-cycle GHG emissions of EVs charged by electricity generated from NG, without utilizing carbon dioxide capture and storage (CCS) technology can be 36%–47% when compared to gasoline vehicles. The large range change in emissions reduction potential is driven by the different generation technologies that could in the future be used to generate electricity in China. When CCS is employed in power plants, the GHG emission reductions increase to about 71%–73% compared to gasoline vehicles. It is found that compressed NG (CNG) and liquefied NG (LNG) fuels can save about 10% of carbon as compared to gasoline vehicles. However, gas-to-liquid (GTL) fuel made through the Fischer-Tropsch method will likely lead to a life-cycle GHG emissions increase, potentially 3%–15% higher than gasoline, but roughly equal to petroleum-based diesel. When CCS is utilized, the GTL fueled vehicles emit roughly equal GHG emissions to petroleum-based diesel fuel high-efficient hybrid electric vehicle from the life-cycle perspective.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...