GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of America (GSA)  (3)
  • 2010-2014  (3)
Document type
Publisher
Years
  • 2010-2014  (3)
Year
  • 1
    Publication Date: 2013-10-24
    Description: Interactions between subglacial hydrology and the ocean make the existence of estuaries at the grounding zones of ice sheets likely. Here we present geophysical observations of an estuary at the downstream end of the hydrologic system that links the active subglacial lakes beneath Whillans Ice Stream to the ocean beneath the Ross Ice Shelf, Antarctica. This subglacial estuary consists of a hydropotential low upstream of the grounding zone, which is linked to the ocean by a hydropotential trough and a large subglacial channel. This subglacial channel, which is imaged using active source seismic methods, has an apparent width of 1 km and a maximum depth of 7 m. The hydropotential trough continues upstream of the grounding zone and results from an along-flow depression in surface elevations. Pressure differences along the trough axis are within a range that can be overcome by tidally induced processes, making the interaction of subglacial and ocean water likely.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-11-22
    Description: Many of the key processes governing fast glacier flow involve interaction between a glacier and its basal hydrological system, which is hidden from direct observation. Passive seismic monitoring has shown promise as a tool for remotely monitoring basal processes, but lack of glacier-bed access prevents clear understanding of the relationships between subglacial processes and corresponding seismic emissions. Here we describe direct measurements of basal hydrology, sliding, and broadband seismicity made in a unique subglacial facility in Norway during the onset of two summer melt seasons. In the most pronounced of these episodes, rapid delivery of surface meltwater to the bed briefly enhanced basal slip following a period of elevated high-frequency seismic activity related to surface crevassing. Subsequent ground tilt derived from ultralong-period seismic signals was associated with subglacial bedrock deformation during transient pressurization of the basal hydraulic system. These signals are interpreted to represent hydraulic jacking as the supply of water to the bed exceeded the capacity of the hydraulic system. Enhanced slip terminated 2.5 h after it started, when ice-bed decoupling or increased connectivity in the basal cavity network relieved cavity overpressure. The results support theoretical models for hydraulic jacking and illustrate how melt-induced increases in speed can be short lived if cavity growth or ice-bed decoupling allows basal water more efficient drainage.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-01-30
    Description: Subglacial stick-slip motion speeds erosion by hydrofracturing and in other ways, as determined from analysis of the growing body of field data. Microearthquake monitoring commonly detects subglacial earthquakes, likely mostly from stick-slip motion of debris-laden ice over bedrock. Source parameters show that many quakes cause enough motion to greatly lower water pressure in cavities on the lee sides of bedrock steps. We calculate that the resulting expansion of higher-pressure water in nearby cracks promotes hydrofracturing, with even relatively small cracks growing unstably under thick glaciers and all cracks growing faster than for aseismic behavior. This mechanism also helps generate the step-like topography favoring block plucking. This stick-slip glacier-erosion hypothesis suggests that the erosion rate will increase with ice thickness as well as basal shear stress, ice-flow velocity, and water supply.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...