GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers  (2)
  • Public Library of Science  (1)
  • 2010-2014  (3)
  • 1
    facet.materialart.
    Unknown
    Frontiers
    In:  Frontiers in Marine Science, 1 (7).
    Publication Date: 2021-04-23
    Description: The ocean plays a central role in our earth's climate system and also provides a range of important ecosystem services, including food, energy, transport, and nutrient cycling. Marine biogeochemistry focuses on the study of complex biological, chemical, and physical processes involved in the cycling of key chemical elements within the ocean, and between the ocean and the seafloor, land and atmosphere. The ocean is increasingly perturbed by human induced alterations to our planet, including anthropogenic emissions of nitrogen, phosphorus, carbon and trace elements, and climate change. The establishment of a detailed understanding of biogeochemical processes, including their rates, is essential to the identification and assessment of climatic and chemical feedbacks associated with changes in the chemical and physical environment that are mediated through ocean biology, chemistry and physics. Important research areas in marine biogeochemistry involve the cycling of organic and inorganic forms of carbon, nitrogen and phosphorus, the cycling and biological roles of essential trace elements, and the fate and climatic impact of marine produced trace gases.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-24
    Description: In this study we show that metals, and in particular copper (Cu), can disrupt the lytic cycle in the Emiliania huxleyi-EhV86 host-virus system. E. huxleyi lysis rates were reduced at high total Cu concentrations (〉 approximately 500 nM) in the presence and absence of EDTA (ethylenediaminetetraacetic acid) in acute short term exposure experiments. Zinc (Zn), cadmium (Cd), and cobalt (Co) were not observed to affect the lysis rate of EhV86 in these experiments. The cellular glutathione (GSH) content increased in virus infected cells, but not as a result of metal exposure. In contrast, the cellular content of phytochelatins (PCs) increased only in response to metal exposure. The increase in glutathione content is consistent with increases in the production of reactive oxygen species (ROS) on viral lysis, while increases in PC content are likely linked to metal homeostasis and indicate that metal toxicity to the host was not affected by viral infection. We propose that Cu prevents lytic production of EhV86 by interfering with virus DNA (deoxyribonucleic acid) synthesis through a transcriptional block, which ultimately suppresses the formation of ROS. © 2012 Gledhill, Devez, Highfield, Singleton, Achterberg and Schroeder.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-01-22
    Description: During the winter of 2006 we measured nifH gene abundances, dinitrogen (N2) fixation rates and carbon fixation rates in the eastern tropical and sub-tropical North Atlantic Ocean. The dominant diazotrophic phylotypes were filamentous cyanobacteria, which may include Trichodesmium and Katagnymene, with up to 106 L−1 nifH gene copies, unicellular group A cyanobacteria with up to 105 L−1 nifH gene copies and gamma A proteobacteria with up to 104 L−1 nifH gene copies. N2 fixation rates were low and ranged between 0.032–1.28 nmol N L−1 d−1 with a mean of 0.30±0.29 nmol N L−1 d−1 (1σ, n = 65). CO2-fixation rates, representing primary production, appeared to be nitrogen limited as suggested by low dissolved inorganic nitrogen to phosphate ratios (DIN:DIP) of about 2±3.2 in surface waters. Nevertheless, N2 fixation rates contributed only 0.55±0.87% (range 0.03–5.24%) of the N required for primary production. Boosted regression trees analysis (BRT) showed that the distribution of the gamma A proteobacteria and filamentous cyanobacteria nifH genes was mainly predicted by the distribution of Prochlorococcus, Synechococcus, picoeukaryotes and heterotrophic bacteria. In addition, BRT indicated that multiple a-biotic environmental variables including nutrients DIN, dissolved organic nitrogen (DON) and DIP, trace metals like dissolved aluminum (DAl), as a proxy of dust inputs, dissolved iron (DFe) and Fe-binding ligands as well as oxygen and temperature influenced N2 fixation rates and the distribution of the dominant diazotrophic phylotypes. Our results suggest that lower predicted oxygen concentrations and higher temperatures due to climate warming may increase N2 fixation rates. However, the balance between a decreased supply of DIP and DFe from deep waters as a result of more pronounced stratification and an enhanced supply of these nutrients with a predicted increase in deposition of Saharan dust may ultimately determine the consequences of climate warming for N2 fixation in the North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...