GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Late Pliocene changes in the advection of Mediterranean Outflow Water (MOW) derivates were reconstructed at northeast Atlantic DSDP/ODP sites 548 and 982 and compared to records of WMDW at West Mediterranean Site 978. Neodymium isotope (εNd) values more positive than −10.5/−11 reflect diluted MOW derivates that spread almost continuously into the northeast Atlantic from 3.7 to 2.55 Ma, reaching Rockall Plateau Site 982 from 3.63 to 2.75 Ma. From 3.4 to 3.3 Ma average MOW temperature and salinity increased by 2°–4 °C and ~1 psu both at proximal Site 548 and distal Site 982. The rise implies a rise in flow strength, coeval with a long-term rise in both west Mediterranean Sea surface salinity by almost 2 psu and average bottom water salinity (BWS) by ~1 psu, despite inherent uncertainties in BWS estimates. The changes were linked with major Mediterranean aridification and a drop in African monsoon humidity. In contrast to model expectations, the rise in MOW salt discharge after 3.4 Ma did not translate into improved ventilation of North Atlantic Deep Water, since it possibly was too small to significantly influence Atlantic Meridional Overturning Circulation. Right after ~2.95 Ma, with the onset of major Northern Hemisphere Glaciation, long-term average bottom water temperature (BWT) and BWS at Site 548 dropped abruptly by ~5 °C and ~1–2 psu, in contrast to more distal Site 982, where BWT and BWS continued to oscillate at estimates of ~2 °C and 1.5–2.5 psu higher than today until ~2.6 Ma. We relate the small-scale changes both to a reduced MOW flow and to enhanced dilution by warmwaters of a strengthenedNorth Atlantic Current temporarily replacingMOWderivates at Rockall Plateau.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Extremely low summer sea-ice coverage in the Arctic Ocean in 2007 allowed extensive sampling and a wide quasi-synoptic hydrographic and δ18O dataset could be collected in the Eurasian Basin and the Makarov Basin up to the Alpha Ridge and the East Siberian continental margin. With the aim of determining the origin of freshwater in the halocline, fractions of river water and sea-ice meltwater in the upper 150 m were quantified by a combination of salinity and δ18O in the Eurasian Basin. Two methods, applying the preformed phosphate concentration (PO*) and the nitrate-to-phosphate ratio (N/P), were compared to further differentiate the marine fraction into Atlantic and Pacific-derived contributions. While PO*-based assessments systematically underestimate the contribution of Pacific-derived waters, N/P-based calculations overestimate Pacific-derived waters within the Transpolar Drift due to denitrification in bottom sediments at the Laptev Sea continental margin. Within the Eurasian Basin a west to east oriented front between net melting and production of sea-ice is observed. Outside the Atlantic regime dominated by net sea-ice melting, a pronounced layer influenced by brines released during sea-ice formation is present at about 30 to 50 m water depth with a maximum over the Lomonosov Ridge. The geographically distinct definition of this maximum demonstrates the rapid release and transport of signals from the shelf regions in discrete pulses within the Transpolar Drift. The ratio of sea-ice derived brine influence and river water is roughly constant within each layer of the Arctic Ocean halocline. The correlation between brine influence and river water reveals two clusters that can be assigned to the two main mechanisms of sea-ice formation within the Arctic Ocean. Over the open ocean or in polynyas at the continental slope where relatively small amounts of river water are found, sea-ice formation results in a linear correlation between brine influence and river water at salinities of about 32 to 34. In coastal polynyas in the shallow regions of the Laptev Sea and southern Kara Sea, sea-ice formation transports river water into the shelf’s bottom layer due to the close proximity to the river mouths. This process therefore results in waters that form a second linear correlation between brine influence and river water at salinities of about 30 to 32. Our study indicates which layers of the Arctic Ocean halocline are primarily influenced by sea-ice formation in coastal polynyas and which layers are primarily influenced by sea-ice formation over the open ocean. Accordingly we use the ratio of sea-ice derived brine influence and river water to link the maximum in brine influence within the Transpolar Drift with a pulse of shelf waters from the Laptev Sea that was likely released in summer 2005.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: New multiproxy marine data of the Eemian interglacial (MIS5e) from the Norwegian Sea manifest a cold event with near-glacial surface ocean summer temperatures (3–4 °C). This mid-Eemian cooling divided the otherwise relatively warm interglacial climate and was associated with widespread expansions of winter sea-ice and polar water masses due to changes in atmospheric circulation and ocean stability. While the data also verify a late rather than early last interglacial warm peak, which is in general disharmony with northern hemisphere insolation maximum and the regional climatic progression of the early Holocene, the cold event itself was likely instrumental for delaying the last interglacial climate development in the Polar North when compared with regions farther south. Such a ‘climatic decoupling’ of the Polar region may bear profound implications for the employment of Eemian conditions to help evaluate the present and future state of the Arctic cryosphere during a warming interglacial.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Eclogites from the Tian Shan high-pressure/low-temperature (HP/LT) metamorphic belt show evidence for successively increasing metasomatic alteration with increasing retrograde, blueschist-facies overprint. To constrain the source(s) of the metasomatizing fluid and to evaluate elemental and isotopic changes during this overprint, two sequences of eclogite-blueschist transitions were investigated: A layered transition from eclogite to blueschist (FTS 9–1 sequence) and blueschist-facies overprinted pillow metabasalts (FTS 4 samples). Geochemical trends based on the relationships of K, Ba, Rb and Th are consistent with HP metasomatism, but distinct from typical seafloor alteration trends. In contrast, oxygen isotope ratios in garnet (δ18OV-SMOW = 7.3–8.7‰) and omphacite (δ18OV-SMOW = 8.2–9.7‰) are similar to δ18OV-SMOW in bulk low-temperature altered oceanic crust (AOC), suggesting O isotopic preservation of a seafloor alteration signature. Carbonate crystallization related to the metasomatic overprint demonstrate CO2 mobility during subduction and potential C storage in HP metamorphic rocks. Carbon isotope ratios in the two sequences differ markedly: Disseminated calcite in the layered FTS 9–1 sequence has δ13CV-PDB = − 9.14 ± 0.19‰, whereas vein-forming ankerite in the pillow metabasalts has δ13CV-PDB = − 2.08 ± 0.12‰. The ankerite reflects an inorganic marine/hydrothermal signature, as observed in ophiolites, whereas the low δ13CV-PDB values from the calcite point to a contribution of organic carbon. The time when the metasomatic overprint occurred is estimated to be ~ 320 ± 11 Ma based on a Rb-Sr isochron age of six blueschist samples from the pillow metabasalts, which is in agreement with active subduction in this region. Initial (T = 320 Ma) 87Sr/86Sr ratios for all HP/LT rocks range from 0.7059 – 0.7085, and εNd320Ma varies from − 0.4 to + 10.9. Both eclogite-blueschist sequences have initial Sr isotope compositions (87Sr/86Sr ~ 0.707) that are significantly higher than those of typical oceanic mantle-derived basalts. They are thought to derive from a fluid that preserved the Sr isotopic signature of seawater by fluid-rock interaction with seawater-altered oceanic lithosphere in a subduction channel. Mixing models between eclogite and various fluids suggest that the contribution of a sediment-derived fluid was likely less than 20%. A fluid predominantly derived from seawater-altered oceanic lithosphere is also supported by the calculated O isotope composition of the fluids (10.2 – 11.2‰). It is thus evident that subduction channel fluids carry complex, mixed elemental and isotopic signatures, which reflect the composition of their source rocks modified by interaction with various other lithologies. Highlights ► Eclogites from the Tian Shan show blueschist-facies metasomatic overprint ► Fluid-induced metasomatism occurred at 320 ± 11 Ma ► Fluid predominantly derived from seawater-altered oceanic lithosphere ► Carbonates reflect C sequestration of mixture of organic and inorganic components
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...