GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (7)
  • Wiley  (7)
  • 2010-2014  (14)
Document type
Years
Year
  • 11
    Publication Date: 2019-09-23
    Description: Estimating the magnitude of Agulhas leakage, the volume flux of water from the Indian to the Atlantic Ocean, is difficult because of the presence of other circulation systems in the Agulhas region. Indian Ocean water in the Atlantic Ocean is vigorously mixed and diluted in the Cape Basin. Eulerian integration methods, where the velocity field perpendicular to a section is integrated to yield a flux, have to be calibrated so that only the flux by Agulhas leakage is sampled. Two Eulerian methods for estimating the magnitude of Agulhas leakage are tested within a high-resolution two-way nested model with the goal to devise a mooring-based measurement strategy. At the GoodHope line, a section halfway through the Cape Basin, the integrated velocity perpendicular to that line is compared to the magnitude of Agulhas leakage as determined from the transport carried by numerical Lagrangian floats. In the first method, integration is limited to the flux of water warmer and more saline than specific threshold values. These threshold values are determined by maximizing the correlation with the float-determined time series. By using the threshold values, approximately half of the leakage can directly be measured. The total amount of Agulhas leakage can be estimated using a linear regression, within a 90% confidence band of 12 Sv. In the second method, a subregion of the GoodHope line is sought so that integration over that subregion yields an Eulerian flux as close to the float-determined leakage as possible. It appears that when integration is limited within the model to the upper 300 m of the water column within 900 km of the African coast the time series have the smallest root-mean-square difference. This method yields a root-mean-square error of only 5.2 Sv but the 90% confidence band of the estimate is 20 Sv. It is concluded that the optimum thermohaline threshold method leads to more accurate estimates even though the directly measured transport is a factor of two lower than the actual magnitude of Agulhas leakage in this model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-09-23
    Description: Model drift in the Labrador Sea in eddy permitting model simulations is examined using a series of configurations based on the NEMO numerical framework. There are two phases of the drift that we can identify, beginning with an initial rapid 3-year period, associated with the adjustment of the model from its initial conditions followed by an extended model drift/adjustment that continued for at least another decade. The drift controlled the model salinity in the Labrador Sea, over-riding the variability. Thus, during this initial period, similar behavior was observed between the inter-annually forced experiments as with perpetual year forcing. The results also did not depend on whether the configuration was global, or regional North Atlantic Ocean. The inclusion of an explicit sea-ice component did not seem to have a significant impact on the interior drift. Clear cut evidence for the drift having an advective nature was shown, based on two separate currents/flow regimes. We find, as expected, the representation of freshwater in the sub-polar gyre’s boundary currents important. But this study also points out another, equally important process and pathway: the input of high salinity mode water from the subtropical North Atlantic. The advective regime is dependent on the details of the model, such as the representation of the freshwater transport in the model’s East Greenland Current being very sensitive to the strength of the local sea surface salinity restoring (and the underlying field that the model is being restored to).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Eos, Transactions American Geophysical Union, 94 (10). p. 100.
    Publication Date: 2016-08-05
    Description: AGU Chapman Conference: The Agulhas System and Its Role in Changing Ocean Circulation, Climate, and Marine Ecosystems; Stellenbosch, South Africa, 8–12 October 2012
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-04-08
    Description: For the past 50 years it has been assumed that the principal pathway for the deep limb of the Atlantic Meridional Overturning Circulation (AMOC) is the Deep Western Boundary Current (DWBC). However, recent observations of Lagrangian floats have shown that the DWBC is not necessarily a unique, dominant, or continuous pathway for these deep waters. A significant portion of the deep water export from the subpolar to the subtropical gyres follows a pathway through the interior of the Newfoundland and subtropical basins, which is constrained by the western boundary and the western flank of the Mid-Atlantic Ridge. The hypothesis that deep eddy-driven recirculation gyres are a mechanism for partitioning the deep limb of the AMOC into the DWBC and this interior pathway is investigated here. Eulerian and Lagrangian analyses of the output of ocean general circulation models at eddy-resolving, eddy-permitting, and non-eddy permitting resolutions are used to test this hypothesis. Eddy-driven recirculation gyres, simulated in the eddy-resolving and eddy-permitting models and similar to recirculations inferred from hydrographic data, are shown to shape the export pathways of deep water from the subpolar to the subtropical gyres.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...