GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    The American Society for Biochemistry and Molecular Biology (ASBMB)
    Publikationsdatum: 2013-09-28
    Beschreibung: The stacking of Golgi cisternae involves GRASP65 and GRASP55. The oligomerization of the N-terminal GRASP domain of these proteins, which consists of two tandem PDZ domains, is required to tether the Golgi membranes. However, the molecular basis for GRASP assembly is unclear. Here, we determined the crystal structures of the GRASP domain of GRASP65 and GRASP55. The structures reveal similar homotypic interactions: the GRASP domain forms a dimer in which the peptide-binding pockets of the two neighboring PDZ2 domains face each other, and the dimers are further connected by the C-terminal tail of one GRASP domain inserting into the binding pocket of the PDZ1 domain in another dimer. Biochemical analysis suggests that both types of contacts are relatively weak but are needed in combination for GRASP-mediated Golgi stacking. Our results unveil a novel mode of membrane tethering by GRASP proteins and provide insight into the mechanism of Golgi stacking.
    Print ISSN: 0021-9258
    Digitale ISSN: 1083-351X
    Thema: Biologie , Chemie und Pharmazie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2013-10-26
    Beschreibung: Serum antibodies and mannose-binding lectin (MBL) are important host defense factors for host adaptive and innate immunity, respectively. Antibodies and MBL also initiate the classical and lectin complement pathways, respectively, leading to opsonophagocytosis. We have shown previously that Staphylococcus aureus wall teichoic acid (WTA), a cell wall glycopolymer consisting of ribitol phosphate substituted with α- or β-O-N-acetyl-d-glucosamine (GlcNAc) and d-alanine, is recognized by MBL and serum anti-WTA IgG. However, the exact antigenic determinants to which anti-WTA antibodies or MBL bind have not been determined. To answer this question, several S. aureus mutants, such as α-GlcNAc glycosyltransferase-deficient S. aureus ΔtarM, β-GlcNAc glycosyltransferase-deficient ΔtarS, and ΔtarMS double mutant cells, were prepared from a laboratory and a community-associated methicillin-resistant S. aureus strain. Here, we describe the unexpected finding that β-GlcNAc WTA-deficient ΔtarS mutant cells (which have intact α-GlcNAc) escape from anti-WTA antibody-mediated opsonophagocytosis, whereas α-GlcNAc WTA-deficient ΔtarM mutant cells (which have intact β-GlcNAc) are efficiently engulfed by human leukocytes via anti-WTA IgG. Likewise, MBL binding in S. aureus cells was lost in the ΔtarMS double mutant but not in either single mutant. When we determined the serum concentrations of the anti-α- or anti-β-GlcNAc-specific WTA IgGs, anti-β-GlcNAc WTA-IgG was dominant in pooled human IgG fractions and in the intact sera of healthy adults and infants. These data demonstrate the importance of the WTA sugar conformation for human innate and adaptive immunity against S. aureus infection.
    Print ISSN: 0021-9258
    Digitale ISSN: 1083-351X
    Thema: Biologie , Chemie und Pharmazie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2013-02-23
    Beschreibung: Runx2 and Axin2 regulate craniofacial development and skeletal maintenance. Runx2 is essential for calvarial bone development, as Runx2 haploinsufficiency causes cleidocranial dysplasia. In contrast, Axin2-deficient mice develop craniosynostosis because of high β-catenin activity. Axin2 levels are elevated in Runx2−/− calvarial cells, and Runx2 represses transcription of Axin2 mRNA, suggesting a direct relationship between these factors in vivo. Here we demonstrate that Runx2 binds several regions of the Axin2 promoter and that Runx2-mediated repression of Axin2 transcription depends on Hdac3. To determine whether Runx2 contributes to the etiology of Axin2 deficiency-induced craniosynostosis, we generated Axin2−/−:Runx2+/− mice. These double mutant mice had longer skulls than Axin2−/− mice, indicating that Runx2 haploinsufficiency rescued the craniosynostosis phenotype of Axin2−/− mice. Together, these studies identify a key mechanistic pathway for regulating intramembranous bone development within the skull that involves Runx2- and Hdac3-mediated suppression of Axin2 to prevent the untimely closure of the calvarial sutures.
    Print ISSN: 0021-9258
    Digitale ISSN: 1083-351X
    Thema: Biologie , Chemie und Pharmazie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2013-03-23
    Beschreibung: BMP4 has been shown to induce C3H10T1/2 pluripotent stem cells to commit to adipocyte lineage. In addition to several proteins identified, microRNAs also play a critical role in the process. In this study, we identified microRNA-140 (miR-140) as a direct downstream component of the BMP4 signaling pathway during the commitment of C3H10T1/2 cells to adipocyte lineage. Overexpression of miR-140 in C3H10T1/2 cells promoted commitment, whereas knockdown of its expression led to impairment. Additional studies indicated that Ostm1 is a bona fide target of miR-140, which is significantly decreased during commitment, and Ostm1 was also demonstrated to function as an anti-adipogenic factor.
    Print ISSN: 0021-9258
    Digitale ISSN: 1083-351X
    Thema: Biologie , Chemie und Pharmazie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2013-05-11
    Beschreibung: Histone methylation is one of the major epigenetic modifications even in early diverging unicellular eukaryotes. We show that a widespread lysine methyltransferase from Archaea (aKMT4), bears striking structural and functional resemblance to the core of distantly related eukaryotic KMT4/Dot1. aKMT4 methylates a set of various proteins, including the chromatin proteins Sul7d and Cren7, and RNA exosome components. Csl4- and Rrp4-exosome complexes are methylated in different patterns. aKMT4 can self-methylate intramolecularly and compete with other proteins for the methyl group. Automethylation is inhibited by suitable substrates or DNA in a concentration-dependent manner. The automethylated enzyme shows relatively compromised activity. aKMT4-8A mutant with abrogated automethylation shows a more than 150% increase in methylation of substrates, suggesting a possible mechanism to regulate methyltransferase activity. More interestingly, methylation of Sul7d, but not Cren7, by aKMT4 is significantly enhanced by DNA. MS/MS and kinetic analysis further suggest that aKMT4 methylates Sul7d in the chromatin context. These data provide a clue to the possible regulation of aKMT4 activity by the local chromatin environment, albeit as a promiscuous enzyme required for extensive and variegated lysine methylation in Sulfolobus. This study supports the prokaryotic origin model of eukaryotic histone modification enzymes and sheds light on regulation of archaeal chromatin.
    Print ISSN: 0021-9258
    Digitale ISSN: 1083-351X
    Thema: Biologie , Chemie und Pharmazie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2012-09-29
    Beschreibung: The human ether-a-go-go-related gene (hERG) encodes the rapidly activating delayed rectifier potassium channel (IKr) which plays an important role in cardiac repolarization. A reduction or increase in hERG current can cause long or short QT syndrome, respectively, leading to fatal cardiac arrhythmias. The channel density in the plasma membrane is a key determinant of the whole cell current amplitude. To gain insight into the molecular mechanisms for the regulation of hERG density at the plasma membrane, we used whole cell voltage clamp, Western blotting, and immunocytochemical methods to investigate the effects of an integral membrane protein, caveolin-3 (Cav3) on hERG expression levels. Our data demonstrate that Cav3, hERG, and ubiquitin-ligase Nedd4-2 interact with each other and form a complex. Expression of Cav3 thus enhances the hERG-Nedd4-2 interaction, leading to an increased ubiquitination and degradation of mature, plasma-membrane localized hERG channels. Disrupting Nedd4-2 interaction with hERG by mutations eliminates the effects of Cav3 on hERG channels. Knockdown of endogenous Cav3 or Nedd4-2 in cultured neonatal rat ventricular myocytes using siRNA led to an increase in native IKr. Our data demonstrate that hERG expression in the plasma membrane is regulated by Cav3 via Nedd4-2. These findings extend our understanding of the regulation of hERG channels and cardiac electrophysiology.
    Print ISSN: 0021-9258
    Digitale ISSN: 1083-351X
    Thema: Biologie , Chemie und Pharmazie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    The American Society for Biochemistry and Molecular Biology (ASBMB)
    Publikationsdatum: 2012-10-06
    Beschreibung: BMP2 (bone morphogenetic protein 2) is known to activate unfolded protein response signaling molecules, including XBP1S and ATF6. However, the influence on XBP1S and ATF6 in BMP2-induced chondrocyte differentiation has not yet been elucidated. In this study, we demonstrate that BMP2 mediates mild endoplasmic reticulum stress-activated ATF6 and directly regulates XBP1S splicing in the course of chondrogenesis. XBP1S is differentially expressed during BMP2-stimulated chondrocyte differentiation and exhibits prominent expression in growth plate chondrocytes. This expression is probably due to the activation of the XBP1 gene by ATF6 and splicing by IRE1a. ATF6 directly binds to the 5′-flanking regulatory region of the XBP1 gene at its consensus binding elements. Overexpression of XBP1S accelerates chondrocyte hypertrophy, as revealed by enhanced expression of type II collagen, type X collagen, and RUNX2; however, knockdown of XBP1S via the RNAi approach abolishes hypertrophic chondrocyte differentiation. In addition, XBP1S associates with RUNX2 and enhances RUNX2-induced chondrocyte hypertrophy. Altered expression of XBP1S in chondrocyte hypertrophy was accompanied by altered levels of IHH (Indian hedgehog) and PTHrP (parathyroid hormone-related peptide). Collectively, XBP1S may be a novel regulator of hypertrophic chondrocyte differentiation by 1) acting as a cofactor of RUNX2 and 2) affecting IHH/PTHrP signaling.
    Print ISSN: 0021-9258
    Digitale ISSN: 1083-351X
    Thema: Biologie , Chemie und Pharmazie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2014-07-26
    Beschreibung: Krüppel-associated box domain-associated protein 1 (KAP1) is a universal transcriptional corepressor that undergoes multiple posttranslational modifications (PTMs), including SUMOylation and Ser-824 phosphorylation. However, the functional interplay of KAP1 PTMs in regulating KAP1 turnover during DNA damage response remains unclear. To decipher the role and cross-talk of multiple KAP1 PTMs, we show here that DNA double strand break-induced KAP1 Ser-824 phosphorylation promoted the recruitment of small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, ring finger protein 4 (RNF4), and subsequent RNF4-mediated, SUMO-dependent degradation. Besides the SUMO interacting motif (SIM), a previously unrecognized, but evolutionarily conserved, arginine-rich motif (ARM) in RNF4 acts as a novel recognition motif for selective target recruitment. Results from combined mutagenesis and computational modeling studies suggest that RNF4 utilizes concerted bimodular recognition, namely SIM for Lys-676 SUMOylation and ARM for Ser(P)-824 of simultaneously phosphorylated and SUMOylated KAP1 (Ser(P)-824-SUMO-KAP1). Furthermore, we proved that arginines 73 and 74 within the ARM of RNF4 are required for efficient recruitment to KAP1 or accelerated degradation of promyelocytic leukemia protein (PML) under stress. In parallel, results of bimolecular fluorescence complementation assays validated the role of the ARM in recognizing Ser(P)-824 in living cells. Taken together, we establish that the ARM is required for RNF4 to efficiently target Ser(P)-824-SUMO-KAP1, conferring ubiquitin Lys-48-mediated proteasomal degradation in the context of double strand breaks. The conservation of such a motif may possibly explain the requirement for timely substrate selectivity determination among a myriad of SUMOylated proteins under stress conditions. Thus, the ARM dynamically regulates the SIM-dependent recruitment of targets to RNF4, which could be critical to dynamically fine-tune the abundance of Ser(P)-824-SUMO-KAP1 and, potentially, other SUMOylated proteins during DNA damage response.
    Print ISSN: 0021-9258
    Digitale ISSN: 1083-351X
    Thema: Biologie , Chemie und Pharmazie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2014-07-19
    Beschreibung: NHERF1, NHERF2, and NHERF3 belong to the NHERF (Na+/H+ exchanger regulatory factor) family of PSD-95/Discs-large/ZO-1 (PDZ) scaffolding proteins. Individually, each NHERF protein has been shown to be involved in the regulation of multiple receptors or transporters including Na+/H+ exchanger 3 (NHE3). Although NHERF dimerizations have been reported, results have been inconsistent, and the physiological function of NHERF dimerizations is still unknown. The current study semiquantitatively compared the interaction strength among all possible homodimerizations and heterodimerizations of these three NHERF proteins by pulldown and co-immunoprecipitation assays. Both methods showed that NHERF2 and NHERF3 heterodimerize as the strongest interaction among all NHERF dimerizations. In vivo NHERF2/NHERF3 heterodimerization was confirmed by FRET and FRAP (fluorescence recovery after photobleach). NHERF2/NHERF3 heterodimerization is mediated by PDZ domains of NHERF2 and the C-terminal PDZ domain recognition motif of NHERF3. The NHERF3-4A mutant is defective in heterodimerization with NHERF2 and does not support the inhibition of NHE3 by carbachol. This suggests a role for NHERF2/NHERF3 heterodimerization in the regulation of NHE3 activity. In addition, both PDZ domains of NHERF2 could be simultaneously occupied by NHERF3 and another ligand such as NHE3, α-actinin-4, and PKCα, promoting formation of NHE3 macrocomplexes. This study suggests that NHERF2/NHERF3 heterodimerization mediates the formation of NHE3 macrocomplexes, which are required for the inhibition of NHE3 activity by carbachol.
    Print ISSN: 0021-9258
    Digitale ISSN: 1083-351X
    Thema: Biologie , Chemie und Pharmazie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    The American Society for Biochemistry and Molecular Biology (ASBMB)
    Publikationsdatum: 2014-06-14
    Beschreibung: Despite the number of extensive studies on the immune function and signaling of inflammasomes in various diseases, the activating mechanism of inflammasome, especially the NLRP3 inflammasome, is not fully understood. Nuclear factor E2-related Factor-2 (Nrf2), a key transcription factor that regulates cellular redox homeostasis, has been reported to play both protective and pathogenic roles depending on the disease conditions through undefined mechanism. This study reveals an essential role of Nrf2 in inflammasome activation. LPS stimulation increased Nrf2 protein levels in a Myd88-dependent manner. When compared with wild-type controls, Nrf2-deficient (Nrf2−/−) macrophages showed decreased maturation and secretion of caspase-1 and IL-1β and reduced apoptosis-associated speck-like protein containing CARD (ASC) speck formation in response to various NLRP3 and AIM2 inflammasome stimuli. In contrast, NLRC4 inflammasome activation was not controlled by Nrf2. Biochemical analysis revealed that Nrf2 appeared in the ASC-enriched cytosolic compartment after NLRP3 inflammasome activation. Furthermore, mitochondrial reactive oxygen species-induced NLRP3 activation also required Nrf2. Nrf2−/− mice showed a dramatic decrease in immune cell recruitment and IL-1β generation in alum-induced peritonitis, which is a typical IL-1 signaling-dependent inflammation animal model. This work discovered a critical proinflammatory effect of Nrf2 by mediating inflammasome activation.
    Print ISSN: 0021-9258
    Digitale ISSN: 1083-351X
    Thema: Biologie , Chemie und Pharmazie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...