GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (7)
  • Springer  (5)
  • NOAA  (1)
  • 2010-2014  (13)
Document type
Years
Year
  • 11
    Publication Date: 2019-01-24
    Description: The concept of a spatially continuous western boundary current in the Mozambique Channel has historically been based on erroneous interpretations of ships’ drift. Recent observations have demonstrated that the circulation in the Channel is instead dominated by anti-cyclonic eddies drifting poleward. It has therefore been suggested that no coherent Mozambique Current exists at any time. However, satellite and other observations indicate that a continuous current – not necessarily an inherent part of Mozambique Eddies – may at times be found along the full Mozambican shelf break. Using a high-resolution, numerical model we have demonstrated how such a feature may come about. In the model, a continuous current is a highly irregularly occurring event, occurring about once per year, with an average duration of only 9 days and with a vertical extent of about 800 m. Surface speeds may vary from 0.5 m/s to 1.5 m/s and the volume flux involved is about 10 Sv. The continuous current may occasionally be important for the transport of biota along the continental shelf and slope.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Springer
    In:  In: High Performance Computing in Science and Engineering '12. , ed. by Nagel, W. E., Kröner, D. H. and Resch, M. M. Springer, Heidelberg u.a., pp. 407-414. ISBN 978-3-642-33373-6
    Publication Date: 2014-05-12
    Description: The oceans around southern Africa form a unique system, impacting the regional and global climate [1]. From the Indian Ocean to the Atlantic Ocean vigorous interoceanic exchange of warm and saline waters takes place that is subject to a complicated interplay between local dynamics and global embedment. Central element of the circulation around South Africa is the Agulhas Current [2] that flows poleward along the east coast, closely bound to the shelf at first, and subsequently overshoots the southern tip of Africa to abruptly turn back into the Indian Ocean. Part of the warm and saline waters with tropical Indian Ocean origin, the “Agulhas leakage” [3], flows into the Atlantic and forms the surface return flow of the global thermohaline circulation towards the North Atlantic [4]. The exchange takes place in a highly nonlinear manner, with mesoscale eddies being separated from the retroflecting Agulhas Current, which then strongly interact in the Cape Basin [5]. West of the Cape Basin, large Agulhas rings that have been formed [6] transport the anomalous warm and saline waters into the South Atlantic. In addition to its own dynamics, the Agulhas Current system is influenced by nonlinearities in the source regions: mesoscale eddies originating from the Mozambique Channel and east of Madagascar [7, 8] drift southward and cause the Agulhas Current to be displaced offshore of its mean position by more than 100 km. These solitary meanders (a.k.a. “Natal Pulses”) [9] rapidly propagate downstream triggering the timing of Agulhas rings [10, 11]
    Type: Book chapter , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-04-08
    Description: For the past 50 years it has been assumed that the principal pathway for the deep limb of the Atlantic Meridional Overturning Circulation (AMOC) is the Deep Western Boundary Current (DWBC). However, recent observations of Lagrangian floats have shown that the DWBC is not necessarily a unique, dominant, or continuous pathway for these deep waters. A significant portion of the deep water export from the subpolar to the subtropical gyres follows a pathway through the interior of the Newfoundland and subtropical basins, which is constrained by the western boundary and the western flank of the Mid-Atlantic Ridge. The hypothesis that deep eddy-driven recirculation gyres are a mechanism for partitioning the deep limb of the AMOC into the DWBC and this interior pathway is investigated here. Eulerian and Lagrangian analyses of the output of ocean general circulation models at eddy-resolving, eddy-permitting, and non-eddy permitting resolutions are used to test this hypothesis. Eddy-driven recirculation gyres, simulated in the eddy-resolving and eddy-permitting models and similar to recirculations inferred from hydrographic data, are shown to shape the export pathways of deep water from the subpolar to the subtropical gyres.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...