GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (4)
  • Federation of American Societies for Experimental Biology  (1)
  • 2010-2014  (5)
  • 1
    Publication Date: 2020-08-04
    Description: Fish early life stages have been shown to react sensitive to simulated ocean acidification. In particular, acid–base disturbances elicited by altered seawater carbonate chemistry have been shown to induce pathologies in larval fish. However, the mechanisms underlying these disturbances are largely unknown. We used gene expression profiling of genes involved in acid–base regulation and metabolism to investigate the effects of seawater hypercapnia on developing Japanese ricefish (medaka; Oryzias latipes). Our results demonstrate that embryos respond with delayed development during the time window of 2–5 dpf when exposed to a seawater pCO2 of 0.12 and 0.42 kPa. This developmental delay is associated with strong down-regulation of genes from major metabolic pathways including glycolysis (G6PDH), Krebs cycle (CS) and the electron transport chain (CytC). In a second step we identified acid–base relevant genes in different ontogenetic stages (embryos, hatchlings and adults) and tissues (gill and intestine) that are up regulated in response to hypercapnia, including NHE3, NBCa, NBCb, AE1a, AE1b, ATP1a1a.1, ATP1a1b, ATP1b1a, Rhag, Rhbg and Rhcg. Interestingly, NHE3 and Rhcg expressions were increased in response to environmental hypercapnia in all ontogenetic stages and tissues tested, indicating the central role of these proteins in acid–base regulation. Furthermore, the increased expression of genes from amino acid metabolism pathways (ALT1, ALT2, AST1a, AST1b, AST2 and GLUD) suggests that energetic demands of hatchlings are fueled by the breakdown of amino acids. The present study provides a first detailed gene expression analysis throughout the ontogeny of a euryhaline teleost in response to seawater hypercapnia, indicating highest sensitivity in early embryonic stages, when functional ion regulatory epithelia are not yet developed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-12
    Description: Anthropogenic CO2 emission will lead to an increase in seawater pCO(2) of up to 80-100 Pa (800-1000 mu atm) within this century and to an acidification of the oceans. Green sea urchins (Strongylocentrotus droebachiensis) occurring in Kattegat experience seasonal hypercapnic and hypoxic conditions already today. Thus, anthropogenic CO2 emissions will add up to existing values and will lead to even higher pCO(2) values 〉200 Pa (〉2000 mu atm). To estimate the green sea urchins' potential to acclimate to acidified seawater, we calculated an energy budget and determined the extracellular acid base status of adult S. droebachiensis exposed to moderately (102-145 Pa, 1007-1431 mu atm) and highly (284-385 Pa, 2800-3800 mu atm) elevated seawater pCO(2) for 10 and 45 days. A 45-day exposure to elevated pCO(2) resulted in a shift in energy budgets, leading to reduced somatic and reproductive growth. Metabolic rates were not significantly affected, but ammonium excretion increased in response to elevated pCO(2). This led to decreased O:N ratios. These findings suggest that protein metabolism is possibly enhanced under elevated pCO(2) in order to support ion homeostasis by increasing net acid extrusion. The perivisceral coelomic fluid acid-base status revealed that S. droebachiensis is able to fully (intermediate pCO(2)) or partially (high pCO(2)) compensate extracellular pH (pH(e)) changes by accumulation of bicarbonate (maximum increases 2.5 mM), albeit at a slower rate than typically observed in other taxa (10-day duration for full pH(e) compensation). At intermediate pCO(2), sea urchins were able to maintain fully compensated pH(e) for 45 days. Sea urchins from the higher pCO(2) treatment could be divided into two groups following medium-term acclimation: one group of experimental animals (29%) contained remnants of food in their digestive system and maintained partially compensated pH(e) (+2.3 mM HCO3-), while the other group (71%) exhibited an empty digestive system and a severe metabolic acidosis (-0.5 pH units, -2.4 mM HCO3-). There was no difference in mortality between the three pCO(2) treatments. The results of this study suggest that S. droebachiensis occurring in the Kattegat might be pre-adapted to hypercapnia due to natural variability in pCO(2) in its habitat. We show for the first time that some echinoderm species can actively compensate extracellular pH. Seawater pCO(2) values of 〉200 Pa, which will occur in the Kattegat within this century during seasonal hypoxic events, can possibly only be endured for a short time period of a few weeks. Increases in anthropogenic CO2 emissions and leakages from potential sub-seabed CO2 storage (CCS) sites thus impose a threat to the ecologically and economically important species S. droebachiensis.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 160 (3). pp. 320-330.
    Publication Date: 2020-08-04
    Description: Extensive use of fossil fuels is leading to increasing CO2 concentrations in the atmosphere and causes changes in the carbonate chemistry of the oceans which represents a major sink for anthropogenic CO2. As a result, the oceans' surface pH is expected to decrease by ca. 0.4 units by the year 2100, a major change with potentially negative consequences for some marine species. Because of their carbonate skeleton, sea urchins and their larval stages are regarded as likely to be one of the more sensitive taxa. In order to investigate sensitivity of pre-feeding (2days post-fertilization) and feeding (4 and 7days post-fertilization) pluteus larvae, we raised Strongylocentrotus purpuratus embryos in control (pH 8.1 and pCO2 41Pa e.g. 399μatm) and CO2 acidified seawater with pH of 7.7 (pCO2 134Pa e.g. 1318μatm) and investigated growth, calcification and survival. At three time points (day 2, day 4 and day 7 post-fertilization), we measured the expression of 26 representative genes important for metabolism, calcification and ion regulation using RT-qPCR. After one week of development, we observed a significant difference in growth. Maximum differences in size were detected at day 4 (ca. 10% reduction in body length). A comparison of gene expression patterns using PCA and ANOSIM clearly distinguished between the different age groups (two-way ANOSIM: Global R=1) while acidification effects were less pronounced (Global R=0.518). Significant differences in gene expression patterns (ANOSIM R=0.938, SIMPER: 4.3% difference) were also detected at day 4 leading to the hypothesis that differences between CO2 treatments could reflect patterns of expression seen in control experiments of a younger larva and thus a developmental artifact rather than a direct CO2 effect. We found an up regulation of metabolic genes (between 10%and 20% in ATP-synthase, citrate synthase, pyruvate kinase and thiolase at day 4) and down regulation of calcification related genes (between 23% and 36% in msp130, SM30B, and SM50 at day 4). Ion regulation was mainly impacted by up regulation of Na+/K+-ATPase at day 4 (15%) and down regulation of NHE3 at day 4 (45%). We conclude that in studies in which a stressor induces an alteration in the speed of development, it is crucial to employ experimental designs with a high time resolution in order to correct for developmental artifacts. This helps prevent misinterpretation of stressor effects on organism physiology.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 160 (3). pp. 331-340.
    Publication Date: 2020-08-04
    Description: Anthropogenic CO(2) emissions are acidifying the world's oceans. A growing body of evidence is showing that ocean acidification impacts growth and developmental rates of marine invertebrates. Here we test the impact of elevated seawater pCO(2) (129Pa, 1271 atm) on early development, larval metabolic and feeding rates in a marine model organism, the sea urchin Strongylocentrotus purpuratus. Growth and development was assessed by measuring total body length, body rod length, postoral rod length and posterolateral rod length. Comparing these parameters between treatments suggests that larvae suffer from a developmental delay (by ca. 8%) rather than from the previously postulated reductions in size at comparable developmental stages. Further, we found maximum increases in respiration rates of +100% under elevated pCO(2), while body length corrected feeding rates did not differ between larvae from both treatments. Calculating scope for growth illustrates that larvae raised under high pCO(2) spent an average of 39 to 45% of the available energy for somatic growth, while control larvae could allocate between 78 and 80% of the available energy into growth processes. Our results highlight the importance of defining a standard frame of reference when comparing a given parameter between treatments, as observed differences can be easily due to comparison of different larval ages with their specific set of biological characters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Federation of American Societies for Experimental Biology
    In:  Faseb Journal, 26 (1, Suppl.). 1070.1.
    Publication Date: 2019-02-27
    Description: The present study provides a first finding of the acid-base regulating machinery (ion-transporters relevant for acid-base regulation) in cephalopod, and series of studies showed that they exhibit specialized ion regulatory cells (ionocytes) on their skin and yolk epithelium. A feature that was so far only reported for fish. In addition, several ion regulatory genes were identified in cephalopod to be involved in the compensation of CO2 induced acid-base disturbances, including Na+/H+-exchanger (NHE3), ammonium transporters (Rhcg) and vacuolar H+-ATPase (VHA) by being significantly up regulated in response to elevated sea water pCO2. Here we show for the first time that cephalopod embryos exhibit epidermal ionocytes and that the skin is a mayor site for proton excretion. Similar to fish, ionocytes located on the skin and yolk of cephalopod embryos are characterized by high concentrations of mitochondria. These similar responses towards elevated water pCO2 and sensitivity thresholds during life history may be explained by convergent acid-base regulatory features of cephalopods and fish.
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...