GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1)
  • Copernicus Publications on behalf of the European Geosciences Union  (1)
  • 2010-2014  (1)
Document type
  • Articles  (1)
Years
  • 2010-2014  (1)
Year
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications on behalf of the European Geosciences Union
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013); 6375-6387, doi:10.5194/bg-10-6375-2013.
    Description: Salinity and temperature determine seawater density, and differences in both thereby control global thermohaline circulation. Whereas numerous proxies have been calibrated and applied to reconstruct temperature, a direct and independent proxy for salinity is still missing. Ideally, a new proxy for salinity should target one of the direct constituents of dissolved salt, such as [Na+] or [Cl−]. This study investigates the impact of salinity on foraminiferal Na/Ca values by laser ablation ICP-MS analyses of specimens of the benthic foraminifer Ammonia tepida cultured at a range of salinities (30.0–38.6). Foraminifera at lower salinities (30.0 and 32.5) added more chambers (10–11) to their test over the course of the culturing experiment than those maintained at higher salinities (36.1, 7–8 chambers, and 38.6, 6–7 chambers), suggesting that growth rates in this species are promoted by lower salinities. The Na/Ca of cultured specimens correlates significantly with seawater salinity (Na/Ca = 0.22S–0.75, R2 = 0.96, p 〈 0.01) and size. Values for Na/Ca and DNa vary between 5.17 and 9.29 mmol mol−1 and 0.12–0.16 × 10−3, which are similar to values from inorganic precipitation experiments. The significant correlation between test size and Na/Ca results from co-variation with salinity. This implies that foraminiferal Na/Ca could serve as a robust and independent proxy for salinity, enabling salinity reconstructions independent of calcitic δ18O.
    Description: This research is supported by the Utrecht University, the Darwin Center for Geobiology projects “Biological validation of proxies for temperature, salinity, oxygenation and pCO2 based on experimental evidence using benthic foraminiferal cultures”, Natural Environment Research Council fellowship No. NE/J018856/1 to M. Wolthers and US NSF OCE-1219948 to J. M. Bernhard.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...