GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (2)
  • Nature Publishing Group  (1)
  • 2010-2014  (3)
  • 1
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts .
    Publication Date: 2012-07-06
    Description: EGU2010-9841 Active mud volcanoes, where changing salinities of pore fluids, large temperature gradients and occurrences of free gas are frequently observed, should potentially exhibit significant variability in their internal resistivity structure. This is due to the fact that the bulk resistivity is mainly determined by the porosity of sediments and the electrical resistivity of the pore filling contained therein. The resistivity variations may be derived from controlled source electromagnetic (CSEM) measurements. CSEM systems consist of an electric dipole transmitter producing a time varying source field and electric dipole receivers, which measure the earth´s response to this signal. For a RWE Dea funded investigation of fluid and gas leakages at the North Alex Mud Volcano (NAMV) - a comparatively small target with an area of about 1km2 - we have developed a new high resolution CSEM system. The system consists of several autonomous electric dipole receivers and a lightweight electric dipole transmitter, which can be mounted on a small remotely operated underwater vehicle (ROV). The use of a ROV allows for a precise placement of the transmitter, which is a necessary prerequisite for the investigation of such a small target. Furthermore, electromagnetic signals may be transmitted from different directions with respect to the stationary receivers, allowing for a 3D-style tomographic experiment. In this experiment, ten receivers were deployed over the surface of NAMV at a total of 16 receiver locations. During three successful dives with a Cherokee ROV (Ghent University, Belgium), the transmitter was deployed at a total of 80 locations. Here we present first quantitative results consisting of apparent resistivity estimations from the CSEM time domain data for each transmitter-receiver pair. The apparent resistivity map shows that the NAMV indeed has a heterogeneous resistivity structure with apparent resistivities varying by at least a factor of two: low apparent resistivities (~ 0.8Ωm) are found towards the center of the MV, whereas higher apparent resistivities (~ 1.6Ωm) prevail away from the center. In a second step, we interpret the time-domain data based on 1D inversions. Good data fits can be achieved by models containing 2-3 layers. Generally, the models indicate low resistivities at the surface, which can be associated with penetrating salt water and/or high temperatures. Toward greater depths, increasing resistivities presumably are due to a combination of compaction of sediments (i.e. reduced pore space), an increased presence of fresh water and possible occurrences of free gas. For some 1D models, the increase in resistivity exceeds a factor of 10 or more and layer interfaces are indicated down to depths of up to 70m. The derived resistivity variations observed at the NAMV will be interpreted in conjunction with temperature (Feseker, this session), fluid flow (Brückmann et al., this session) and seismic data (Bialas et al., this session) acquired. Temperature variations measured in the upper few meters are related to fluid flow, where high temperatures are indicative of upwelling fluids of low salinity and low temperature of either a downward flow of saline fluids or no flow activity. This type of surface measurement constitutes an integrative fluid flow gauge, which we can resolve vertically with our resistivity models. Seismic data yield a background structure to our resistivity model. New analysis of seismic data shows that seismic activity may also be linked to fluid flow activity, which we aim to match with resistivity variations and oscillations, which were observed in the electric and magnetic fields (Lefeldt et al., this session).
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts .
    Publication Date: 2012-07-06
    Description: EGU2010-10518 Seafloor compliance is the transfer function between pressure and vertical displacement at the seafloor Infragravity waves in the oceanic layer have long periods in the range of 30 – 500 s and obey a simple frequencywavenumber relation. Seafloor compliance from infragravity waves can be analyzed with single station recordings to determinate sub-seafloor shear wave velocities. Previous studies in the Pacific Ocean have demonstrated that reliable near-surface shear wave profiles can be derived from infragravity wave compliance. However, these studies indicate that, beside the water depth the compliance measurements are limited by instrument sensitivity, calibration uncertainties and possibly other effects. In this work seafloor compliance and infragravity waves are observed at two different locations in the Atlantic Ocean: the Logatchev hydrothermal field at the Mid Atlantic Ridge and the Azores (Sao Miguel Island). The data was acquired with the broadband ocean compliance station developed at the University of Hamburg as well as ocean station from the German instrument pool for amphibian seismology (DEPAS) equipped with broadband seismometers and pressure sensors. Vertical velocity and pressure data were used to calculate power spectral densities and normalized compliance along two profiles (one in each location). Power spectral densities show a dominant peak at low frequencies (0.01-0.035Hz) limited by the expected cut-off frequency, which is dependent on the water depth at each station. The peak has been interpreted as a strong infragravity wave with values between 10-14 and 10-11 (m/s2)2/Hz and 104 and 106 (Pa2)2/Hz for acceleration and pressure respectively. The results show compliance values between 10-10 and 10-8 1/Pa and its estimations take into account the coherence between seismic and pressure signals in order to confirm that the seismic signals in the infragravity waves are caused by pressure sources. Shear wave velocity models, with depth resolution from 200 to 2500 m for the deep water stations, were derived from compliance. Preliminary results indicate shear wave velocity increasing from 200 to 3500 m/s.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Fluids entering the subduction zone play a key role in the subduction process. They cause changes in the dynamics and thermal structure of the subduction zone1, and trigger earthquakes when released from the subducting plate during metamorphism. Fluids are delivered to the subduction zone by the oceanic crust and also enter as the oceanic plate bends downwards at the plate boundary. However, the amount of fluids entering subduction zones is not matched by that leaving through volcanic emissions4 or transfer to the deep mantle, implying possible storage of fluids in the crust. Here we use magnetotelluric data to map the entire hydration and dehydration cycle of the Costa Rican subduction zone to 120 km depth. Along the incoming plate bend, we detect a conductivity anomaly that we interpret as sea water penetrating down extensional faults and cracks into the upper mantle. Along the subducting plate interface we document the dehydration of sediments, the crust and mantle. We identify an accumulation of fluids at ~20–30 km depth at a distance of 30 km seaward from the volcanic arc. Comparison with other subduction zones5–14 indicates that such fluid accumulation is a global phenomenon. Although we are unable to test whether these fluid reservoirs grow with time, we suggest that they can account for some of the missing outflow of fluid at subduction zones.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...