GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-12-02
    Description: The order of genes in eukaryotic genomes has generally been assumed to be neutral, since gene order is largely scrambled over evolutionary time. Only a handful of exceptional examples are known, typically involving deeply conserved clusters of tandemly duplicated genes (e.g., Hox genes and histones). Here we report the first systematic survey of microsynteny conservation across metazoans, utilizing 17 genome sequences. We identified nearly 600 pairs of unrelated genes that have remained tightly physically linked in diverse lineages across over 600 million years of evolution. Integrating sequence conservation, gene expression data, gene function, epigenetic marks, and other genomic features, we provide extensive evidence that many conserved ancient linkages involve (1) the coordinated transcription of neighboring genes, or (2) genomic regulatory blocks (GRBs) in which transcriptional enhancers controlling developmental genes are contained within nearby bystander genes. In addition, we generated ChIP-seq data for key histone modifications in zebrafish embryos, which provided further evidence of putative GRBs in embryonic development. Finally, using chromosome conformation capture (3C) assays and stable transgenic experiments, we demonstrate that enhancers within bystander genes drive the expression of genes such as Otx and Islet , critical regulators of central nervous system development across bilaterians. These results suggest that ancient genomic functional associations are far more common than previously thought—involving ~12% of the ancestral bilaterian genome—and that cis -regulatory constraints are crucial in determining metazoan genome architecture.
    Electronic ISSN: 1549-5469
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-07
    Description: We show that Leishmania donovani –infected macrophages (Ms) are capable of stimulating MHC class II (MHC-II)–restricted T cells at 6 h of infection. At 48 h, infected Ms (I-Ms) failed to stimulate MHC-II–restricted T cells but not MHC class I–restricted ones, in contrast to normal Ms. Such I-Ms could stimulate T cells at a higher Ag concentration, indicating that general Ag processing and trafficking of peptide–MHC-II complexes are not defective. Analysis of the kinetic parameters, like "k on " and "k off ," showed that peptide–MHC-II complex formation is compromised in I-Ms compared with normal Ms. This indicates interference in loading of the cognate peptide to MHC-II, which may be due to the presence of a noncognate molecule. This notion received support from the finding that exposure of I-Ms to low pH or treatment with 2-(1-adamantyl)-ethanol, a molecule that favors peptide exchange, led to T cell activation. When treated with 2-(1-adamantyl)-ethanol, splenocytes from 8 wk–infected BALB/c mice showed significantly higher antileishmanial T cell expansion in vitro compared with untreated controls. Hence, it is tempting to speculate that high, but not low, concentrations of cognate peptide may favor peptide exchange in I-Ms, leading to expansion of the antileishmanial T cell repertoire. The results suggest that a high Ag dose may overcome compromised T cell responses in visceral leishmaniasis, and this has an important implication in therapeutic vaccine design.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-08-21
    Description: Monocytes and macrophages (m) are plastic cells whose functions are governed by microenvironmental cues. Wound fluid bathing the wound tissue reflects the wound microenvironment. Current literature on wound inflammation is primarily based on the study of blood monocyte-derived macrophages, cells that have never been exposed to the wound microenvironment. We sought to compare pair-matched monocyte-derived macrophages with m isolated from chronic wounds of patients. Oncostatin M (OSM) was differentially overexpressed in pair-matched wound m. Both PGE 2 and its metabolite 13,14-dihydro-15-keto-PGE 2 (PGE-M) were abundant in wound fluid and induced OSM in wound-site m. Consistently, induction of OSM mRNA was observed in m isolated from PGE 2 -enriched polyvinyl alcohol sponges implanted in murine wounds. Treatment of human THP-1 cell-derived m with PGE 2 or PGE-M caused dose-dependent induction of OSM. Characterization of the signal transduction pathways demonstrated the involvement of EP4 receptor and cAMP signaling. In human m, PGE 2 phosphorylated Axl, a receptor tyrosine kinase (RTK). Axl phosphorylation was also induced by a cAMP analogue demonstrating interplay between the cAMP and RTK pathways. PGE 2 -dependent Axl phosphorylation led to AP-1 transactivation, which is directly implicated in inducible expression of OSM. Treatment of human m or mice excisional wounds with recombinant OSM resulted in an anti-inflammatory response as manifested by attenuated expression of endotoxin-induced TNF-α and IL-1β. OSM treatment also improved wound closure during the early inflammatory phase of healing. In summary, this work recognizes PGE 2 in the wound fluid as a potent inducer of m OSM, a cytokine with an anti-inflammatory role in cutaneous wound healing.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-06-02
    Description: Comparative functional genomics studies the evolution of biological processes by analyzing functional data, such as gene expression profiles, across species. A major challenge is to compare profiles collected in a complex phylogeny. Here, we present Arboretum, a novel scalable computational algorithm that integrates expression data from multiple species with species and gene phylogenies to infer modules of coexpressed genes in extant species and their evolutionary histories. We also develop new, generally applicable measures of conservation and divergence in gene regulatory modules to assess the impact of changes in gene content and expression on module evolution. We used Arboretum to study the evolution of the transcriptional response to heat shock in eight species of Ascomycota fungi and to reconstruct modules of the ancestral environmental stress response (ESR). We found substantial conservation in the stress response across species and in the reconstructed components of the ancestral ESR modules. The greatest divergence was in the most induced stress, primarily through module expansion. The divergence of the heat stress response exceeds that observed in the response to glucose depletion in the same species. Arboretum and its associated analyses provide a comprehensive framework to systematically study regulatory evolution of condition-specific responses.
    Electronic ISSN: 1549-5469
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-07-03
    Description: Gaining insights on gene regulation from large-scale functional data sets is a grand challenge in systems biology. In this article, we develop and apply methods for transcriptional regulatory network inference from diverse functional genomics data sets and demonstrate their value for gene function and gene expression prediction. We formulate the network inference problem in a machine-learning framework and use both supervised and unsupervised methods to predict regulatory edges by integrating transcription factor (TF) binding, evolutionarily conserved sequence motifs, gene expression, and chromatin modification data sets as input features. Applying these methods to Drosophila melanogaster, we predict ~300,000 regulatory edges in a network of ~600 TFs and 12,000 target genes. We validate our predictions using known regulatory interactions, gene functional annotations, tissue-specific expression, protein–protein interactions, and three-dimensional maps of chromosome conformation. We use the inferred network to identify putative functions for hundreds of previously uncharacterized genes, including many in nervous system development, which are independently confirmed based on their tissue-specific expression patterns. Last, we use the regulatory network to predict target gene expression levels as a function of TF expression, and find significantly higher predictive power for integrative networks than for motif or ChIP-based networks. Our work reveals the complementarity between physical evidence of regulatory interactions (TF binding, motif conservation) and functional evidence (coordinated expression or chromatin patterns) and demonstrates the power of data integration for network inference and studies of gene regulation at the systems level.
    Electronic ISSN: 1549-5469
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-09-20
    Description: CD40 plays dual immunoregulatory roles in Leishmania major infection and tumor regression. The functional duality emerges from CD40-induced reciprocal p38MAPK and ERK-1/2 phosphorylations. Because phosphotyrosine-based signaling in hematopoietic cells is regulated by the phosphotyrosine phosphatase SHP-1, which is not implied in CD40 signaling, we examined whether SHP-1 played any roles in CD40-induced reciprocal signaling and anti-leishmanial function. We observed that a weaker CD40 stimulation increased SHP-1 activation. ERK-1/2 inhibition or p38MAPK overexpression inhibited CD40-induced SHP-1 activation. An ultra-low-dose, CD40-induced p38MAPK phosphorylation was enhanced by SHP-1 inhibition but reduced by SHP-1 overexpression. A reverse profile was observed with ERK-1/2 phosphorylation. SHP-1 inhibition reduced syk phosphorylation but increased lyn phosphorylation; syk inhibition reduced but lyn inhibition enhanced CD40-induced SHP-1 phosphorylation. Corroborating these findings, in L. major –infected macrophages, CD40-induced SHP-1 phosphorylation increased and SHP-1 inhibition enhanced CD40-induced p38MAPK activation and inducible NO synthase expression. IL-10 enhanced SHP-1 phosphorylation and CD40-induced ERK-1/2 phosphorylation but reduced the CD40-induced p38MAPK phosphorylation, whereas anti–IL-10 Ab exhibited reverse effects on these CD40-induced functions, identifying IL-10 as a crucial element in the SHP-1-MAPK feedback system. Lentivirally overexpressed SHP-1 rendered resistant C57BL/6 mice susceptible to the infection. Lentivirally expressed SHP-1 short hairpin RNA enhanced the CD40-induced L. major parasite killing in susceptible BALB/c mice. Thus, we establish an SHP-1–centered feedback system wherein SHP-1 modulates CD40-induced p38MAPK activation threshold and reciprocal ERK-1/2 activation, establishing itself as a critical regulator of CD40 signaling reciprocity and mechanistically re-emphasizing its role as a potential target against the diseases where CD40 is involved.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-01-18
    Description: At an injury site, efficient clearance of apoptotic cells by wound macrophages or efferocytosis is a prerequisite for the timely resolution of inflammation. Emerging evidence indicates that microRNA-21 (miR-21) may regulate the inflammatory response. In this work, we sought to elucidate the significance of miR-21 in the regulation of efferocytosis-mediated suppression of innate immune response, a key process implicated in resolving inflammation following injury. An increased expression of inducible miR-21 was noted in postefferocytotic peripheral blood monocyte-derived macrophages. Such induction of miR-21 was associated with silencing of its target genes PTEN and PDCD4. Successful efferocytosis of apoptotic cells by monocyte-derived macrophages resulted in the suppression of LPS-induced NF-B activation and TNF-α expression. Interestingly, bolstering of miR-21 levels alone, using miR mimic, resulted in significant suppression of LPS-induced TNF-α expression and NF-B activation. We report that efferocytosis-induced miR-21, by silencing PTEN and GSK3β, tempers the LPS-induced inflammatory response. Macrophage efferocytosis is known to trigger the release of anti-inflammatory cytokine IL-10. This study demonstrates that following successful efferocytosis, miR-21 induction in macrophages silences PDCD4, favoring c-Jun–AP-1 activity, which in turn results in elevated production of anti-inflammatory IL-10. In summary, this work provides direct evidence implicating miRNA in the process of turning on an anti-inflammatory phenotype in the postefferocytotic macrophage. Elevated macrophage miR-21 promotes efferocytosis and silences target genes PTEN and PDCD4, which in turn accounts for a net anti-inflammatory phenotype. Findings of this study highlight the significance of miRs in the resolution of wound inflammation.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-04
    Description: The efflux of antimony through multidrug resistance protein (MDR)-1 is the key factor in the failure of metalloid treatment in kala-azar patients infected with antimony-resistant Leishmania donovani (Sb R LD). Previously we showed that MDR-1 upregulation in Sb R LD infection is IL-10–dependent. Imipramine, a drug in use for the treatment of depression and nocturnal enuresis in children, inhibits IL-10 production from Sb R LD-infected macrophages (Sb R LD-Ms) and favors accumulation of surrogates of antimonials. It inhibits IL-10–driven nuclear translocation of c-Fos/c-Jun, critical for enhanced MDR-1 expression. The drug upregulates histone deacetylase 11, which inhibits acetylation of IL-10 promoter, leading to a decrease in IL-10 production from Sb R LD-Ms. It abrogates Sb R LD-mediated p50/c-Rel binding to IL-10 promoter and preferentially recruits p65/RelB to IL-12 p35 and p40 promoters, causing a decrease in IL-10 and overproduction of IL-12 in Sb R LD-Ms. Histone deacetylase 11 per se does not influence IL-12 promoter activity. Instead, a imipramine-mediated decreased IL-10 level allows optimal IL-12 production in Sb R LD-Ms. Furthermore, exogenous rIL-12 inhibits intracellular Sb R LD replication, which can be mimicked by the presence of Ab to IL-10. This observation indicated that reciprocity exists between IL-10 and IL-12 and that imipramine tips the balance toward an increased IL-12/IL-10 ratio in Sb R LD-Ms. Oral treatment of infected BALB/c mice with imipramine in combination with sodium stibogluconate cleared organ Sb R LD parasites and caused an expansion of the antileishmanial T cell repertoire where sodium stibogluconate alone had no effect. Our study deciphers a detailed molecular mechanism of imipramine-mediated regulation of IL-10/IL-12 reciprocity and its impact on Sb R LD clearance from infected hosts.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...