GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The American Society for Microbiology (ASM)  (65)
  • Wiley-Blackwell  (16)
  • American Society of Hematology (ASH)  (12)
  • 2010-2014  (93)
Document type
Years
Year
  • 1
    Publication Date: 2012-12-29
    Description: Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). Although IBDV-induced immunosuppression has been well established, the underlying exact molecular mechanism for such induction is not very clear. We report here the identification of IBDV VP4 as an interferon suppressor by interaction with the glucocorticoid-induced leucine zipper (GILZ) in host cells. We found that VP4 suppressed the expression of type I interferon in HEK293T cells after tumor necrosis factor alpha (TNF-α) treatment or Sendai virus (SeV) infection and in DF-1 cells after poly(I·C) stimulation. In addition, the VP4-induced suppression of type I interferon could be completely abolished by knockdown of GILZ by small interfering RNA (siRNA). Furthermore, knockdown of GILZ significantly inhibited IBDV growth in host cells, and this inhibition could be markedly mitigated by anti-alpha/beta interferon antibodies in the cell cultures ( P 〈 0.001). Thus, VP4-induced suppression of type I interferon is mediated by interaction with GILZ, a protein that appears to inhibit cell responses to viral infection.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-01-06
    Description: Polyelectrolyte-enhanced ultrafiltration was investigated for rhenium(VII) recovery from aqueous solutions by using polyquaternium-6 (PQ6) as a complexing agent. The effects of the operating parameters on the permeate flux ( J ) and the rhenium rejection coefficient ( R ) were studied. In the process of concentration, J declines slowly and R is about 1. The concentrated solution was used for the decomplexation. It takes 10 min to achieve the decomplexation equilibrium at a chloride ion concentration of 100 mg L –1 . The decomplexation percentage reaches 45.6 %. In the diafiltration process, rhenium is extracted effectively, and the purification of the regenerated PQ6 is satisfactory. The regenerated PQ6 was used to bind rhenium(VII). The binding capacity of the regenerated PQ6 is close to that of fresh PQ6. Polyelectrolyte-enhanced ultrafiltration was originally used to achieve the recovery of rhenium from aqueous solutions with the help of polyquaternium-6. The effects of various operating parameters on the permeate flux and the rhenium rejection coefficient were investigated. The integration of four experiments including concentration, decomplexation, diafiltration and reuse of the regenerated polymer was carried out.
    Print ISSN: 0930-7516
    Electronic ISSN: 1521-4125
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-07
    Description: A/duck/Shanghai/28-1/2009(H4N2) (DK28) was isolated from a live poultry market in Shanghai, China. Using PCR and sequencing analysis, we obtained the complete genome sequences of the DK28 virus. The sequence analysis demonstrated that this H4N2 virus was a novel multiple-gene reassortant avian influenza virus (AIV) whose genes originated from H1N1, H1N3, H3N3, H4N2, and H4N6. Knowledge regarding the complete genome sequences of the DK28 virus will be useful for epidemiological surveillance.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-10-12
    Description: Endothelial cells and macrophages are known to engage in tight and specific interactions that contribute to the modulation of vascular function. Here we show that adult endothelial cells provide critical signals for the selective growth and differentiation of macrophages from several hematopoietic progenitors. The process features the formation of well-organized colonies that exhibit progressive differentiation from the center to the periphery and toward an M2-like phenotype, characterized by enhanced expression of Tie2 and CD206/Mrc1. These colonies are long-lived depending on the contact with the endothelium; removal of the endothelial monolayer results in rapid colony dissolution. We further found that Csf1 produced by the endothelium is critical for the expansion of the macrophage colonies and that blockade of Csf1 receptor impairs colony growth. Functional analyses indicate that these macrophages are capable of accelerating angiogenesis, promoting tumor growth, and effectively engaging in tight associations with endothelial cells in vivo. These findings uncover a critical role of endothelial cells in the induction of macrophage differentiation and their ability to promote further polarization toward a proangiogenic phenotype. This work also highlights some of the molecules underlying the M2-like differentiation, a process that is relevant to the progression of both developmental and pathologic angiogenesis.
    Keywords: Vascular Biology
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-05-04
    Description: Salidroside is a phenylpropanoid glycoside isolated from the medicinal plant Rhodiola rosea , which has potent antioxidant properties. Here we show that salidroside prevented the loss of hematopoietic stem cells (HSCs) in mice under oxidative stress. Quiescent HSCs were recruited into cell cycling on in vivo challenge with oxidative stress, which was blocked by salidroside. Surprisingly, salidroside does not prevent the production of reactive oxygen species but reduces hydrogen peroxide–induced DNA-strand breaks in bone marrow cells enriched for HSCs. We tested whether salidroside enhances oxidative DNA damage repair in mice deficient for 5 DNA repair pathways known to be involved in oxidative DNA damage repair; we found that salidroside activated poly(ADP-ribose)polymerase-1 (PARP-1), a component of the base excision repair pathway, in mouse bone marrow HSCs as well as primary fibroblasts and human lymphoblasts. PARP-1 activation by salidroside protects quiescent HSCs from oxidative stress–induced cycling in native animals and self-renewal defect in transplanted recipients, which was abrogated by genetic ablation or pharmacologic inhibition of PARP-1. Together, these findings suggest that activation of PARP-1 by salidroside could affect the homeostasis and function of HSCs and contribute to the antioxidant effects of salidroside.
    Keywords: Hematopoiesis and Stem Cells
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-06-21
    Description: Well-characterized promoters are essential tools for metabolic engineering and synthetic biology. In Streptomyces coelicolor , the native kasO p is a temporally expressed promoter strictly controlled by two regulators, ScbR and ScbR2. In this work, first, kasO p was engineered to remove a common binding site of ScbR and ScbR2 upstream of its core region, thus generating a stronger promoter, kasO p 3 . Second, another ScbR binding site internal to the kasO p 3 core promoter region was abolished by random mutation and screening of the mutant library to obtain the strongest promoter, kasO p* (where the asterisk is used to distinguish the engineered promoter from the native promoter). The activities of kasO p* were compared with those of two known strong promoters, ermE p* and SF14p, in three Streptomyces species. kasO p* showed the highest activity at the transcription and protein levels in all three hosts. Furthermore, relative to ermE p* and SF14p, kasO p* was shown to confer the highest actinorhodin production level when used to drive the expression of actII -ORF4 in S. coelicolor . Therefore, kasO p* is a simple and well-defined strong promoter useful for gene overexpression in streptomycetes.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-06-03
    Description: [1]  In this paper, the essential technique of Grad-Shafranov (GS) reconstruction is reformulated into an inverse boundary value problems (IBVPs) for Laplace's equation on a circle by introducing a Hilbert transform between the normal and tangent component of the boundary gradients. It is proved that the specified IBVPs have unique solution, given the known Dirichlet and Neumann conditions on certain arc. Even when the arc is reduced to only one point on the circle, it can be inferred logically that the unique solution still exists there on the remaining circle. New solution approach for the specified IBVP is suggested with the help of the introduced Hilbert transform. An iterated Tikhonov regularization scheme is applied to deal with the ill-posed linear operators appearing in the discretization of the new approach. Numerical experiments highlight the efficiency and robustness of the proposed method. According to linearity of the elliptic operator in GS equation, its solution can be divided into twoparts. One is solved from a semi-linear elliptic equation with an homogeneous Dirichlet boundary condition. The other is solved from the IBVP of Laplace's equation. It is concluded that there exists a unique solution for the so-called elliptic Cauchy problem for the essential technique of GS-reconstruction.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-05-29
    Description: Hepatitis B virus (HBV) has extremely restricted host and hepatocyte tropism. HBV-based vectors could form the basis of novel therapies for chronic hepatitis B and other liver diseases and would also be invaluable for the study of HBV infection. Previous attempts at developing HBV-based vectors encountered low yields of recombinant viruses and/or lack of sufficient infectivity/cargo gene expression in primary hepatocytes, which hampered follow-up applications. In this work, we constructed a novel vector based on a naturally occurring, highly replicative HBV mutant with a 207-bp deletion in the preS1/polymerase spacer region. By applying a novel insertion strategy that preserves the continuity of the polymerase open reading frame (ORF), recombinant HBV (rHBV) carrying protein or small interfering RNA (siRNA) genes were obtained that replicated and were packaged efficiently in cultured hepatocytes. We demonstrated that rHBV expressing a fluorescent reporter (DsRed) is highly infective in primary tree shrew hepatocytes, and rHBV expressing HBV-targeting siRNA successfully inhibited antigen expression from coinfected wild-type HBV. This novel HBV vector will be a powerful tool for hepatocyte-targeting gene delivery, as well as the study of HBV infection.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-05-29
    Description: cis -Acting elements in the viral genome RNA (vRNA) are essential for the translation, replication, and/or encapsidation of RNA viruses. In this study, a novel conserved cis -acting element was identified in the capsid-coding region of mosquito-borne flavivirus. The d ownstream of 5' c yclization s equence (5'CS) p seudo k not (DCS-PK) element has a three-stem pseudoknot structure, as demonstrated by structure prediction and biochemical analysis. Using dengue virus as a model, we show that DCS-PK enhances vRNA replication and that its function depends on its secondary structure and specific primary sequence. Mutagenesis revealed that the highly conserved stem 1 and loop 2, which are involved in potential loop-helix interactions, are crucial for DCS-PK function. A predicted loop 1-stem 3 base triple interaction is important for the structural stability and function of DCS-PK. Moreover, the function of DCS-PK depends on its position relative to the 5'CS, and the presence of DCS-PK facilitates the formation of 5'-3' RNA complexes. Taken together, our results reveal that the cis -acting element DCS-PK enhances vRNA replication by regulating genome cyclization, and DCS-PK might interplay with other cis -acting elements to form a functional vRNA cyclization domain, thus playing critical roles during the flavivirus life cycle and evolution.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-04-26
    Description: Primary myelofibrosis (PMF) is characterized by fibrosis, ineffective hematopoiesis in marrow, and hematopoiesis in extramedullary sites and is associated with abnormal megakaryocyte (MK) development and increased transforming growth factor (TGF)-β1 release. To clarify the role of TGF-β1 in the pathogenesis of this disease, the TGF-β1 signaling pathway of marrow and spleen of the Gata1 low mouse model of myelofibrosis (MF) was profiled and the consequences of inhibition of TGF-β1 signaling on disease manifestations determined. The expression of 20 genes in marrow and 36 genes in spleen of Gata1 low mice was altered. David-pathway analyses identified alterations of TGF-β1, Hedgehog, and p53 signaling in marrow and spleen and of mammalian target of rapamycin (mTOR) in spleen only and predicted that these alterations would induce consequences consistent with the Gata1 low phenotype (increased apoptosis and G1 arrest both in marrow and spleen and increased osteoblast differentiation and reduced ubiquitin-mediated proteolysis in marrow only). Inhibition of TGF-β1 signaling normalized the expression of p53-related genes, restoring hematopoiesis and MK development and reducing fibrosis, neovascularization, and osteogenesis in marrow. It also normalized p53/mTOR/Hedgehog-related genes in spleen, reducing extramedullary hematopoiesis. These data identify altered expression signatures of TGF-β1 signaling that may be responsible for MF in Gata1 low mice and may represent additional targets for therapeutic intervention in PMF.
    Keywords: Hematopoiesis and Stem Cells, Myeloid Neoplasia
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...