GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (3)
  • 2010-2014  (3)
  • 1
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 80, No. 10 ( 2014-05-15), p. 3103-3112
    Abstract: Biological nitrogen fixation is the primary supply of N to most ecosystems, yet there is considerable uncertainty about how N-fixing bacteria will respond to global change factors such as increasing atmospheric CO 2 and N deposition. Using the nifH gene as a molecular marker, we studied how the community structure of N-fixing soil bacteria from temperate pine, aspen, and sweet gum stands and a brackish tidal marsh responded to multiyear elevated CO 2 conditions. We also examined how N availability, specifically, N fertilization, interacted with elevated CO 2 to affect these communities in the temperate pine forest. Based on data from Sanger sequencing and quantitative PCR, the soil nifH composition in the three forest systems was dominated by species in the Geobacteraceae and, to a lesser extent, Alphaproteobacteria . The N-fixing-bacterial-community structure was subtly altered after 10 or more years of elevated atmospheric CO 2 , and the observed shifts differed in each biome. In the pine forest, N fertilization had a stronger effect on nifH community structure than elevated CO 2 and suppressed the diversity and abundance of N-fixing bacteria under elevated atmospheric CO 2 conditions. These results indicate that N-fixing bacteria have complex, interacting responses that will be important for understanding ecosystem productivity in a changing climate.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2014
    In:  Applied and Environmental Microbiology Vol. 80, No. 23 ( 2014-12), p. 7364-7377
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 80, No. 23 ( 2014-12), p. 7364-7377
    Abstract: Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO 2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO 2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO 2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO 2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO 2 in the black clay ( P 〈 0.04, R 2 〉 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO 2 in the sandy loam ( P = 0.02, R 2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance ( r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass ( r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO 2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO 2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO 2 .
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 55, No. 5 ( 2011-05), p. 2042-2053
    Abstract: Novel classes of antimicrobials are needed to address the challenge of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). Using the architecture of the MRSA interactome, we identified pyruvate kinase (PK) as a potential novel drug target based upon it being a highly connected, essential hub in the MRSA interactome. Structural modeling, including X-ray crystallography, revealed discrete features of PK in MRSA, which appeared suitable for the selective targeting of the bacterial enzyme. In silico library screening combined with functional enzymatic assays identified an acyl hydrazone-based compound (IS-130) as a potent MRSA PK inhibitor (50% inhibitory concentration [IC 50 ] of 0.1 μM) with 〉 1,000-fold selectivity over human PK isoforms. Medicinal chemistry around the IS-130 scaffold identified analogs that more potently and selectively inhibited MRSA PK enzymatic activity and S. aureus growth in vitro (MIC of 1 to 5 μg/ml). These novel anti-PK compounds were found to possess antistaphylococcal activity, including both MRSA and multidrug-resistant S. aureus (MDRSA) strains. These compounds also exhibited exceptional antibacterial activities against other Gram-positive genera, including enterococci and streptococci. PK lead compounds were found to be noncompetitive inhibitors and were bactericidal. In addition, mutants with significant increases in MICs were not isolated after 25 bacterial passages in culture, indicating that resistance may be slow to emerge. These findings validate the principles of network science as a powerful approach to identify novel antibacterial drug targets. They also provide a proof of principle, based upon PK in MRSA, for a research platform aimed at discovering and optimizing selective inhibitors of novel bacterial targets where human orthologs exist, as leads for anti-infective drug development.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2011
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...