GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (2)
  • AWI Computing and Data Centre
  • IEEE
  • 2010-2014  (2)
Document type
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 118 . pp. 2761-2773.
    Publication Date: 2018-02-27
    Description: A realistic primitive-equation model of the Southern Ocean at eddying spatial resolution is used to examine the effect of ocean-surface-velocity dependence of the wind stress on the strength of near-inertial oscillations. Accounting for the ocean-surface-velocity dependence of the wind stress leads to a large reduction of wind-induced near-inertial energy of approximately 40 percent and of wind power input into the near-inertial frequency band of approximately 20 percent. A large part of this reduction can be explained by the leading-order modification to the wind stress if the ocean-surface velocity is included. The strength of the reduction is shown to be modulated by the inverse of the ocean-surface-mixed-layer depth. We conclude that the effect of surface-velocity dependence of the wind stress should be taken into account when estimating the wind-power input into the near-inertial frequency band and when estimating near-inertial energy levels in the ocean due to wind forcing.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 119 (1). pp. 359-376.
    Publication Date: 2019-09-23
    Description: We use an eddying realistic primitive equation model of the Southern Ocean to examine the spatial and temporal distribution of near-inertial wind-power input (WPI) and near-inertial energy (NIE) in the Southern Ocean. We find that the modelled near-inertial WPI is almost proportional to inertial wind-stress variance (IWSV), while the modelled NIE is modulated by the inverse of the mixed-layer depth. We go on to assess recent decadal trends of near-inertial WPI from trends of IWSV based on reanalysis wind-stress. Averaged over the Southern Ocean, annual-mean IWSV is found to have increased by 16 percent over the years 1979 through 2011. Part of the increase of IWSV is found to be related to the positive trend of the Southern Annular Mode over the same period. Finally, we show that there are horizontal local maxima of NIE at depth that are almost exclusively associated with anticyclonic eddies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...