GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (1)
  • Inter-Research  (1)
  • 2010-2014  (2)
  • 1
    Publication Date: 2014-05-05
    Description: Correlating metal to calcium (Me/Ca) ratios of marine biogenic carbonates, such as bivalve shells, to environmental parameters has led to contradictory results. Biogenic carbonates represent complex composites of organic and inorganic phases. Some elements are incorporated preferentially into organic phases, and others are incorporated into inorganic phases. Chemical sample pretreatment to remove the organic matrix prior to trace element analysis may increase the applicability of the investigated proxy relationship, though its efficiency and side effects remain questionable. We treated inorganic calcium carbonate and bivalve shell powder (Arctica islandica) with eight different chemical treatments including H2O2, NaOH, NaOCl, and acetone and analyzed the effects on (1) Me/Ca ratios (Sr/Ca, Mg/Ca, Ba/Ca, and Mn/Ca), (2) organic matter (≈N) content, and (3) mineralogical composition of the calcium carbonate. The different treatments (1) cause element and treatment specific changes of Me/Ca ratios, (2) vary in their efficiency to remove organic matter, and (3) can even alter the phase composition of the calcium carbonate (e.g., formation of Ca(OH)2 during NaOH treatment). Among all examined treatments there were none without any side effects. In addition, certain Me/Ca changes we observed upon chemical treatment contradict our expectations that lattice-bound elements (Sr and Ba) should not be affected, whereas non-lattice-bound elements (Mg and Mn) should decrease upon removal of the organic matrix. For instance, we observe that NaOCl treatment did not alter Sr/Ca ratios but caused unexpected changes of the Mg/Ca ratios. The latter demonstrates that the buildup of complex biogenic composites like the shell of Arctica islandica are still poorly understood.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-16
    Description: We compared primary production and respiration of temperate (Helgoland, North Sea) and subtidal Arctic (Kongsfjorden, Svalbard) microphytobenthic communities during summer. The diatom communities were generally characterized as cosmopolitan, displayed no site specificity, and had similar chl a and fucoxanthin concentrations. Their net and gross photosynthesis rates and light adaptation intensities, derived from laboratory microsensor measurements, were also similar, despite differences in water temperature. Daily oxygen fluxes across the sediment− water interface were estimated by combining laboratory microprofile and planar optode measurements with in situ data on oxygen penetration and light dynamics. During the study period, the Svalbard sediments were on average net heterotrophic,while the Helgoland sediments were net autotrophic (−22.4 vs. 9.2 mmol O2 m−2 d−1). This was due to high infaunal abundance in the Svalbard sediments that caused high oxygen uptake rates in the sediments and consumption below the sediment euphotic zone. Additionally, bioirrigation of the sediment due to infaunal burrow ventilation was reduced by light; thus, the sedimentary oxygen inventory was reduced with increasing light. Conversely, light-enhanced the oxygen inventory in the Helgoland sediments. Oxygen dynamics in the Svalbard sediments were therefore dominated by bioirrigation, whereas in the Helgoland sediments they were dominated by photosynthetic oxygen production.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...