GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-03-26
    Description: Silver nanoparticles (AgNPs) are considered to be a potentially useful tool for controlling various pathogens. However, there are concerns about the release of AgNPs into environmental media, as they may generate adverse human health and ecological effects. In this study, we developed and evaluated a novel micrometer-sized magnetic hybrid colloid (MHC) decorated with variously sized AgNPs (AgNP-MHCs). After being applied for disinfection, these particles can be easily recovered from environmental media using their magnetic properties and remain effective for inactivating viral pathogens. We evaluated the efficacy of AgNP-MHCs for inactivating bacteriophage X174, murine norovirus (MNV), and adenovirus serotype 2 (AdV2). These target viruses were exposed to AgNP-MHCs for 1, 3, and 6 h at 25°C and then analyzed by plaque assay and real-time TaqMan PCR. The AgNP-MHCs were exposed to a wide range of pH levels and to tap and surface water to assess their antiviral effects under different environmental conditions. Among the three types of AgNP-MHCs tested, Ag30-MHCs displayed the highest efficacy for inactivating the viruses. The X174 and MNV were reduced by more than 2 log 10 after exposure to 4.6 x 10 9 Ag30-MHCs/ml for 1 h. These results indicated that the AgNP-MHCs could be used to inactivate viral pathogens with minimum chance of potential release into environment.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-21
    Description: Soil nitrification plays an important role in the reduction of soil fertility and in nitrate enrichment of groundwater. Various ammonia-oxidizing archaea (AOA) are considered to be members of the pool of ammonia-oxidizing microorganisms in soil. This study reports the discovery of a chemolithoautotrophic ammonia oxidizer that belongs to a distinct clade of nonmarine thaumarchaeal group I.1a, which is widespread in terrestrial environments. The archaeal strain MY2 was cultivated from a deep oligotrophic soil horizon. The similarity of the 16S rRNA gene sequence of strain MY2 to those of other cultivated group I.1a thaumarchaeota members, i.e., Nitrosopumilus maritimus and " Candidatus Nitrosoarchaeum koreensis," is 92.9% for both species. Extensive growth assays showed that strain MY2 is chemolithoautotrophic, mesophilic (optimum temperature, 30°C), and neutrophilic (optimum pH, 7 to 7.5). The accumulation of nitrite above 1 mM inhibited ammonia oxidation, while ammonia oxidation itself was not inhibited in the presence of up to 5 mM ammonia. The genome size of strain MY2 was 1.76 Mb, similar to those of N. maritimus and " Ca . Nitrosoarchaeum koreensis," and the repertoire of genes required for ammonia oxidation and carbon fixation in thaumarchaeal group I.1a was conserved. A high level of representation of conserved orthologous genes for signal transduction and motility in the noncore genome might be implicated in niche adaptation by strain MY2. On the basis of phenotypic, phylogenetic, and genomic characteristics, we propose the name " Candidatus Nitrosotenuis chungbukensis" for the ammonia-oxidizing archaeal strain MY2.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-26
    Description: Stable isotope probing (SIP) is a cultivation-free methodology that provides information about the identity of microorganisms participating in assimilatory processes in complex communities. In this study, a Herminiimonas -related bacterium was identified as the dominant member of a denitrifying microcosm fed [ 13 C]toluene. The genome of the uncultivated toluene-degrading bacterium was obtained by applying pyrosequencing to the heavy DNA fraction. The draft genome comprised ~3.8 Mb, in 131 assembled contigs. Metabolic reconstruction of aromatic hydrocarbon (toluene, benzoate, p -cresol, 4-hydroxybenzoate, phenylacetate, and cyclohexane carboxylate) degradation indicated that the bacterium might specialize in anaerobic hydrocarbon degradation. This characteristic is novel for the order Burkholderiales within the class Betaproteobacteria . Under aerobic conditions, the benzoate oxidation gene cluster (BOX) system is likely involved in the degradation of benzoate via benzoyl coenzyme A. Many putative genes for aromatic hydrocarbon degradation were closely related to those in the Rhodocyclaceae (particularly Aromatoleum aromaticum EbN1) with respect to organization and sequence similarity. Putative mobile genetic elements associated with these catabolic genes were highly abundant, suggesting gene acquisition by Herminiimonas via horizontal gene transfer.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-07
    Description: The cellulosomes produced by Clostridium cellulovorans are organized by the specific interactions between the cohesins in the scaffolding proteins and the dockerins of the catalytic components. Using a cohesin biomarker, we identified a cellulosomal enzyme which belongs to the glycosyl hydrolase family 5 and has a domain of unknown function 291 (DUF291) with functions similar to those of the surface layer homology domain in C. cellulovorans . The purified endoglucanase G (EngG) had the highest synergistic degree with exoglucanase (ExgS) in the hydrolysis of crystalline cellulose (EngG/ExgS ratio = 3:1; 1.71-fold). To measure the binding affinity of the dockerins in EngG for the cohesins of the main scaffolding protein, a competitive enzyme-linked interaction assay was performed. Competitors, such as ExgS, reduced the percentage of EngG that were bound to the cohesins to less than 20%; the results demonstrated that the cohesins prefer to bind to the common cellulosomal enzymes rather than to EngG. Additionally, in surface plasmon resonance analysis, the dockerin in EngG had a relatively weak affinity (30- to 123-fold) for cohesins compared with the other cellulosomal enzymes. In the cell wall affinity assay, EngG anchored to the cell surfaces of C. cellulovorans using its DUF291 domain. Immunofluorescence microscopy confirmed the cell surface display of the EngG complex. These results indicated that in C. cellulovorans , EngG assemble into both the cellulolytic complex and the cell wall complex to aid in the hydrolysis of cellulose substrates.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-09
    Description: Hepatitis C virus (HCV) nonstructural protein 5B (NS5B), an RNA-dependent RNA polymerase (RdRp), is the key enzyme for HCV RNA replication. We previously showed that HCV RdRp is phosphorylated by protein kinase C-related kinase 2 (PRK2). In the present study, we used biochemical and reverse-genetics approaches to demonstrate that HCV NS5B phosphorylation is crucial for viral RNA replication in cell culture. Two-dimensional phosphoamino acid analysis revealed that PRK2 phosphorylates NS5B exclusively at its serine residues in vitro and in vivo . Using in vitro kinase assays and mass spectrometry, we identified two phosphorylation sites, Ser29 and Ser42, in the 1 finger loop region that interacts with the thumb subdomain of NS5B. Colony-forming assays using drug-selectable HCV subgenomic RNA replicons revealed that preventing phosphorylation by Ala substitution at either Ser29 or Ser42 impairs HCV RNA replication. Furthermore, reverse-genetics studies using HCV infectious clones encoding phosphorylation-defective NS5B confirmed the crucial role of these PRK2 phosphorylation sites in viral RNA replication. Molecular-modeling studies predicted that the phosphorylation of NS5B stabilizes the interactions between its 1 loop and thumb subdomain, which are required for the formation of the closed conformation of NS5B known to be important for de novo RNA synthesis. Collectively, our results provide evidence that HCV NS5B phosphorylation has a positive regulatory role in HCV RNA replication. IMPORTANCE While the role of RNA-dependent RNA polymerases (RdRps) in viral RNA replication is clear, little is known about their functional regulation by phosphorylation. In this study, we addressed several important questions about the function and structure of phosphorylated hepatitis C virus (HCV) nonstructural protein 5B (NS5B). Reverse-genetics studies with HCV replicons encoding phosphorylation-defective NS5B mutants and analysis of their RdRp activities revealed previously unidentified NS5B protein features related to HCV replication and NS5B phosphorylation. These attributes most likely reflect potential structural changes induced by phosphorylation in the 1 finger loop region of NS5B with two identified phosphate acceptor sites, Ser29 and Ser42, which may transiently affect the closed conformation of NS5B. Elucidating the effects of dynamic changes in NS5B phosphorylation status during viral replication and their impacts on RNA synthesis will improve our understanding of the molecular mechanisms of NS5B phosphorylation-mediated regulation of HCV replication.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...