GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (11)
  • 1985-1989  (2)
Document type
Keywords
Language
Years
Year
  • 1
    Keywords: foraminifera ; ocean ; climate
    Type of Medium: Book
    Pages: 346 S , zahlr. Ill., graph. Darst
    ISBN: 9062567444
    Language: Undetermined
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 319 (1986), S. 50-52 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Despite the early recognition of the importance of reconstructing the sequence of events during planktonic foraminiferal growth3'8, only recently has the first comprehensive and comparative work appeared9. Departing from previous procedures, we followed an ontogenetic approach by considering the ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Jonkers, Lukas; Brummer, Geert-Jan A; Peeters, Frank J C; van Aken, Hendrik M; de Jong, M Femke (2010): Seasonal stratification, shell flux, and oxygen isotope dynamics of left-coiling N. pachyderma and T. quinqueloba in the western subpolar North Atlantic. Paleoceanography, 25, PA2204, https://doi.org/10.1029/2009PA001849
    Publication Date: 2023-02-12
    Description: We present an almost 3 year long time series of shell fluxes and oxygen isotopes of left-coiling Neogloboquadrina pachyderma and Turborotalita quinqueloba from sediment traps moored in the deep central Irminger Sea. We determined their response to the seasonal change from a deeply mixed water column with occasional deep convection in winter to a thermally stratified water column with a surface mixed layer (SML) of around 50 m in summer. Both species display very low fluxes during winter with a remnant summer population holding out until replaced by a vital population that seeds the subsequent blooms. This annual population overturning is marked by a 0.7 per mill increase in d18O in both species. The shell flux of N. pachyderma peaks during the spring bloom and in late summer, when stratification is close to its minimum and maximum, respectively. Both export periods contribute about equally and account for 〉95% of the total annual flux. Shell fluxes of T. quinqueloba show only a single broad pulse in summer, thus following the seasonal stratification cycle. The d18O of N. pachyderma reflects temperatures just below the base of the seasonal SML without offset from isotopic equilibrium. The d18O pattern of T. quinqueloba shows a nearly identical amplitude and correlates highly with the d18O of N. pachyderma. Therefore T. quinqueloba also reflects temperature near the base of the SML but with a positive offset from isotopic equilibrium. These offsets contrast with observations elsewhere and suggest a variable offset from equilibrium calcification for both species. In the Irminger Sea the species consistently show a contrast in their flux timings. Their flux-weighted delta d18O will thus dominantly be determined by seasonal temperature differences at the base of the SML rather than by differences in their depth habitat. Consequently, their sedimentary delta d18O may be used to infer the seasonal contrast in temperature at the base of the SML.
    Keywords: Calcium carbonate, flux; Calculated, see reference(s); Carbon, organic, flux; Carlo Erba Flash; DATE/TIME; Date/time end; Event label; Flux of total mass; Foraminifera, planktic, other, flux; IRM_1; IRM_3; IRM_4; Isotope ratio mass spectrometry; Neogloboquadrina pachyderma sinistral, flux; Neogloboquadrina pachyderma sinistral, δ18O; Nitrogen, total, flux; North Atlantic; Silicon, flux; Standard error; Trap, sediment; TRAPS; Turborotalita quinqueloba, flux; Turborotalita quinqueloba, δ18O
    Type: Dataset
    Format: text/tab-separated-values, 671 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kasper, Sebastian; van der Meer, Marcel T J; Castañeda, Isla S; Tjallingii, Rik; Brummer, Geert-Jan A; Sinninghe Damsté, Jaap S; Schouten, Stefan (2015): Testing alkenone D/H ratio as a paleo indicator of sea surface salinity in a coastal ocean margin (Mozambique Channel). Organic Geochemistry, 78, 62-68, https://doi.org/10.1016/j.orggeochem.2014.10.011
    Publication Date: 2023-12-22
    Description: Reconstructing past ocean salinity is important for assessing paleoceanographic change and therefore past climatic dynamics. Commonly, sea water salinity reconstruction is based on foraminifera oxygen isotope ratio values combined with sea surface temperature reconstruction. However, the approach relies on multiple proxies, resulting in relatively large uncertainty and, consequently, relatively low accuracy of salinity estimates. An alternative tool for past ocean salinity reconstruction is the hydrogen isotope composition of long chain (C37) alkenones (dDalkenone). Here, we applied dDalkenone to a 39 ka long coastal sediment record from the Eastern South African continental shelf in the Mozambique Channel, close to the Zambezi River mouth. Despite changes in global sea water dD related to glacial - interglacial ice volume effects, no clear changes were observed in the dDalkenone record throughout the entire 39 ka. The BIT index record from the same core showed high BIT values during the glacial and low values during the Holocene. This indicates a more pronounced freshwater influence at the core location during the glacial, resulting in alkenones depleted in deuterium during that time and, thereby, explains the lack of a clear glacial-interglacial alkenone dD shift. Correlation between the BIT index and dDalkenone during the glacial period suggests that increased continental runoff potentially changed the growth conditions of the alkenone producing haptophytes, promoting coastal haptophyte species with generally more enriched dDalkenone values. We therefore suggest that the application of dDalkenone for reconstructing past salinity in coastal settings may be complicated by changes in the alkenone producing haptophyte community.
    Keywords: 64PE304; 64PE304-80; AGE; Alkenone C37/C38 ratio; Branched and isoprenoid tetraether index; DEPTH, sediment/rock; GC; Gravity corer; INATEX-GEO; Pelagia; South-East African margin; δ Deuterium, alkenone; δ Deuterium, alkenone, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 591 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Jonkers, Lukas; Jimenez-Amat, Patricia; Mortyn, P Graham; Brummer, Geert-Jan A (2013): Seasonal Mg/Ca variability of N. pachyderma (s) and G. bulloides: Implications for seawater temperature reconstruction. Earth and Planetary Science Letters, 376, 137-144, https://doi.org/10.1016/j.epsl.2013.06.019
    Publication Date: 2024-02-17
    Description: iven the importance of high-latitude areas in the ocean-climate system, there is need for a paleothermometer that is reliable at low temperatures. Here we assess the applicability of the Mg/Ca-temperature proxy in colder waters (5-10 °C) by comparing for the first time the seasonal Mg/Ca and d18O cycles of N. pachyderma (s) and G. bulloides using a sediment trap time-series from the northern North Atlantic. While both species show indistinguishable seasonal d18O patterns that clearly track the near surface temperature cycle, their Mg/Ca are very different. G. bulloides Mg/Ca is high (2.0-3.1 mmol/mol), but varies in concert with the seasonal temperature cycle. The Mg/Ca of N. pachyderma (s), on the other hand, is low (1.1-1.5 mmol/mol) and shows only a very weak seasonal cycle. The d18O patterns indicate that both species calcify in the same depth zone. Consequently, depth habitat differences cannot explain the contrasting Mg/Ca patterns. The elevated Mg/Ca in pristine G. bulloides might be due to the presence of high Mg phases that are not preserved in fossil shells. The contrasting absence of a seasonal trend in the Mg/Ca of N. pachyderma (s) confirms other studies where calcification temperatures were less well constrained. The reason for this absence is not fully known, but may include species-specific vital effects. The very different seasonal patterns of both species' Mg/Ca underscore the importance of parameters other than temperature in controlling planktonic foraminiferal Mg/Ca. Our results therefore lend further caution in the interpretation of Mg/Ca-temperature reconstructions from high northern latitudes.
    Keywords: DATE/TIME; Date/time end; DEPTH, water; Event label; Globigerina bulloides, Magnesium/Calcium ratio; Inductively coupled plasma - mass spectrometry (ICP-MS); IRM_1; IRM_3; IRM_4; Neogloboquadrina pachyderma, Magnesium/Calcium ratio; North Atlantic; Sample code/label; Trap, sediment; TRAPS
    Type: Dataset
    Format: text/tab-separated-values, 96 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-13
    Keywords: 905B; BC; Box corer; DEPTH, water; EPOCA; European Project on Ocean Acidification; Indian Ocean; Mass; Mass, brutto; Mass, tara; NIOP-C2; Number of tests; Sample comment; Size fraction; Species; Tyro
    Type: Dataset
    Format: text/tab-separated-values, 84 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: de Moel, Hans; Ganssen, Gerald M; Peeters, Frank J C; Jung, Simon J A; Kroon, Dick; Brummer, Geert-Jan A; Zeebe, Richard E (2009): Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification? Biogeosciences, 6, 1917-1925, https://doi.org/10.5194/bg-6-1917-2009
    Publication Date: 2024-04-13
    Description: About one third of the anthropogenic carbon dioxide (CO2) released into the atmosphere in the past two centuries has been taken up by the ocean. As CO2 invades the surface ocean, carbonate ion concentrations and pH are lowered. Laboratory studies indicate that this reduces the calcification rates of marine calcifying organisms, including planktic foraminifera. Such a reduction in calcification resulting from anthropogenic CO2 emissions has not been observed, or quantified in the field yet. Here we present the findings of a study in the Western Arabian Sea that uses shells of the surface water dwelling planktic foraminifer Globigerinoides ruber in order to test the hypothesis that anthropogenically induced acidification has reduced shell calcification of this species. We found that light, thin-walled shells from the surface sediment are younger (based on 14C and d13C measurements) than the heavier, thicker-walled shells. Shells in the upper, bioturbated, sediment layer were significantly lighter compared to shells found below this layer. These observations are consistent with a scenario where anthropogenically induced ocean acidification reduced the rate at which foraminifera calcify, resulting in lighter shells. On the other hand, we show that seasonal upwelling in the area also influences their calcification and the stable isotope (d13C and d18O) signatures recorded by the foraminifera shells. Plankton tow and sediment trap data show that lighter shells were produced during upwelling and heavier ones during non-upwelling periods. Seasonality alone, however, cannot explain the 14C results, or the increase in shell weight below the bioturbated sediment layer. We therefore must conclude that probably both the processes of acidification and seasonal upwelling are responsible for the presence of light shells in the top of the sediment and the age difference between thick and thin specimens.
    Keywords: 905B; BC; BC21WP7; Box corer; EPOCA; European Project on Ocean Acidification; Indian Ocean; NIOP-B0/C0; NIOP-C2; Tyro
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-13
    Keywords: BC; BC21WP7; Box corer; Category; Comment; EPOCA; European Project on Ocean Acidification; Indian Ocean; Mass; NIOP-B0/C0; Number of tests; Percentage; Size fraction; Tyro
    Type: Dataset
    Format: text/tab-separated-values, 74 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-13
    Keywords: Average; BC; BC21WP7; Box corer; Comment; EPOCA; European Project on Ocean Acidification; Image number/name; Indian Ocean; NIOP-B0/C0; Tyro; x; y; z
    Type: Dataset
    Format: text/tab-separated-values, 120 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...