GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (1)
  • 1995-1999  (2)
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 395 (1998), S. 365-367 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The production of organic precursors to life depends critically onthe form of the reactants. In particular, an environment dominated by N2 is far less efficient in synthesizing nitrogen-bearing organics than a reducing environment rich in ammonia (refs 1, 2). ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-515X
    Keywords: Amazônia ; dissolved nitrogen dynamics ; groundwater ; nitrogen isotopes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The δ15N composition of the dominant form of dissolved inorganic nitrogen (DIN) was determined in upland groundwater, riparian groundwater, and stream water of the Barro Branco catchment, Amazônas, Brazil. The δ15N composition of organic nitrogen in riparian and upland leaf litter was also determined. The data for these waters could be divided into three groups: upland groundwater DIN predominately composed of NO3 − with δ15N values averaging 6.25 ± 0.9 riparian groundwater DIN primarily composed of NH4 + with δ15N values averaging 9.17 ± 1.0 and stream water DIN predominately composed of NO3 − with δ15N values averaging 4.52 ± 0.8‰ Nitrate samples taken from the stream source and from the stream adjacent to the groundwater transects showed a downstream increase in δ15N from 1.0to 4.5‰ Leaf litter samples averaged 3.5 ± 1.2‰ The observed patterns in isotopic composition, together with previously observed inorganic nitrogen species and concentration shifts between upland, riparian and stream waters, suggest that groundwater DIN is not the primary source of DIN to the stream. Instead, the isotopic data suggest that remineralization of organic nitrogen within the stream itself may be a major source of stream DIN, and that the majority of DIN entering the stream via groundwater flowpaths is removed at the riparian-stream interface.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 3175-3183, doi:10.5194/bg-10-3175-2013.
    Description: Orca Basin, an intraslope basin on the Texas-Louisiana continental slope, hosts a hypersaline, anoxic brine in its lowermost 200 m in which limited microbial activity has been reported. This brine contains a large reservoir of reduced and aged carbon, and appears to be stable at decadal time scales: concentrations and isotopic composition of dissolved inorganic (DIC) and organic carbon (DOC) are similar to measurements made in the 1970s. Both DIC and DOC are more "aged" within the brine pool than in overlying water, and the isotopic contrast between brine carbon and seawater carbon is much greater for DIC than DOC. While the stable carbon isotopic composition of brine DIC points towards a combination of methane and organic carbon remineralization as its source, radiocarbon and box model results point to the brine interface as the major source region for DIC, allowing for only limited oxidation of methane diffusing upwards from sediments. This conclusion is consistent with previous studies that identify the seawater–brine interface as the focus of microbial activity associated with Orca Basin brine. Isotopic similarities between DIC and DOC suggest a different relationship between these two carbon reservoirs than is typically observed in deep ocean basins. Radiocarbon values implicate the seawater–brine interface region as the likely source region for DOC to the brine as well as DIC.
    Description: This work was funded by the WHOI Postdoctoral Scholar program, NSF Cooperative Agreement for the Operation of a National Ocean Sciences Accelerator Mass Spectrometry Facility (OCE-0753487), and the US National Science Foundation’s Emerging Frontiers program (award 0801741 to SBJ).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...