GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Five strains (JA325, JA389, JA473, JA563 and JA582) of Gram stain-negative, vibrioid to spiral shaped, phototrophic purple bacteria were isolated from solar salterns of India. All strains contained bacteriochlorophyll-a and carotenoids of the spirilloxanthin series as photosynthetic pigments. C18:1ω7c, C18:1ω7c 11-methyl and C16:0 were the major fatty acids of all strains. Diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), ornithine lipid (OL), an unidentified phospholipid (PL), and an unidentified aminolipid (AL) were the major polar lipids of all the strains. According to 16S rRNA gene sequences, all strains clustered phylogenetically with the only species of the genus Rhodothalassium (99.8–99.3% sequence similarity) but only strains JA325 and JA563 were distinctly related (60 + 1.5% DNA–DNA hybridization [DDH]) to the type strain Rhodothalassium salexigens DSM 2132T. However, the genotypic data of strains JA325 and JA563 was not supported because of a large number of phenotypic differences compared to the type strain, therefore, it is proposed that all five newly isolated strains were R. salexigens-like strains. In addition, phylogenetically, the Rhodothalassium clade represented a distinct lineage and formed a deep branch with less than 90% 16S rRNA gene sequence similarity to other orders of the Alphaproteobacteria, and characteristic phenotypic properties also distinguished these bacteria from other purple non-sulfur bacteria. Therefore, the novel family Rhodothalassiaceae fam. nov. and the novel order Rhodothalassiales ord. nov. are proposed for the distinct phyletic line represented by the genus Rhodothalassium.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Three new metabolites, 5-hydroxy-3,7-dimethoxyflavone-4′-O-β-glucopyranoside (1), 2β,19-epoxy-3β,14β-dihydroxy-19-methoxy-5α-card-20(22)-enolide (4) and β-anhydroepidigitoxigenin-3β-O-glucopyranoside (5), along with two known compounds, uzarigenine (2) and β-anhydroepidigitoxigenin (3), were isolated from Calotropis procera (Asclepiadaceae). The structure elucidation was accomplished mainly by nuclear magnetic resonance (NMR) spectroscopic and mass spectrometric methods. To examine putative antimicrobial or cytotoxic activities, various bioassays were performed. Uzarigenine (2) demonstrated moderate cytotoxicity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-21
    Description: The photoactive yellow protein of Ectothiodospira halophila (PYP) was purified to homogeneity by an advanced method and applied as an affinity ligand for the isolation of an anti-PYP IgG fraction which was used for immunoscreening. The distribution of proteins immunologically related to PYP was investigated in protein fractions of 51 strains from 38 species of non-halophilic and halophilic phototrophic and chemotrophic eubacteria and archaeobacteria. Strong immunoreactive bands indicating the presence of authentic PYP on Western blots (apparent mass 17.8 kDa) was only found in the strains of E. halophila. Additionally, two soluble proteins of Chromatium salexigens and Rhodospirillum salexigens (apparent molecular masses 16.4 and 19 kDa, respectively) cross-reacted to approx. 6% and 4%. Analyses of cell fractions of E. halophila revealed that PYP is a cytoplasmic protein.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Systematic and Applied Microbiology, 19 (2). pp. 223-230.
    Publication Date: 2019-01-24
    Description: The fatty acid composition of 27 strains from 7 described Ectothiorhodospira species, including all type strains, were analyzed and compared using the “Microbial Identification System”. According to their ability to grow in media with 15% total salts and more or to require much lower salt concentrations the comparison of the strains was made in two different groups. The strains grown in the established standard medium for Ectothiorhodospira species at 15% and 25% (w/v) salinity formed four major clusters. Two of these enclosed strains of E. halophila, the others E. abdelmalekii (one strain) and E. halochloris (3 strains), respectively. Those strains with salt optima significantly below 10% (w/v) salinity formed three major clusters. The first included strains of E. mobilis and E. marismortui. The second cluster contained strains of E. shaposhnikovii, E. vacuolata and one strain that had been tentatively identified as E. mobilis but should be considered as a strain of E. shaposhnikovii. The third group contained strains that were assigned to E. mobilis but should be regarded as a separate and new species. The observed similarities support and extend patterns of relationships obtained by other taxonomic investigations on the basis of a smaller number of strains.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-10-16
    Description: To date, only a small number of investigations covering microbe–bryozoa associations have been carried out. Most of them have focused on a few bryozoan species and none have covered the antibacterial activities of associated bacteria. In the current study, the proportion and phylogenetic classification of Bryozoan-associated bacteria with antimicrobial properties were investigated. Twenty-one specimens of 14 different bryozoan species were collected from several sites in the Baltic and the Mediterranean Sea. A total of 340 associated bacteria were isolated, and 101 displayed antibiotic activities. While antibiosis was predominantly directed against Gram-positive test strains, 16S rRNA gene sequencing revealed affiliation of the isolates to Gram-negative classes (Flavobacteria, Alpha- and Gammaproteobacteria). One isolate was related to the Gram-positive Actinobacteria. The sequences were grouped into 27 phylotypes on the basis of similarity values ≥99.5%. A host-specific affiliation was not revealed as members of the same phylotype were derived from different bryozoan species. Site-specific patterns, however, were demonstrated. Strains of the genera Sphingomonas and Alteromonas were exclusively isolated from Mediterranean sites, whereas Shewanella, Marinomonas and Vibrio-related isolates were only from Baltic sites. Although Pseudoalteromonas affiliated strains were found in both habitats, they were separated into respective phylotypes. Isolates with 16S rDNA similarity values 〈98%, which could possibly represent new species, belonged to the genera Shewanella, Pseudoalteromonas and Tenacibaculum.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Biotechnology Advances, 29 (5). pp. 468-482.
    Publication Date: 2019-01-21
    Description: The biological resources of the oceans have been exploited since ancient human history, mainly by catching fish and harvesting algae. Research on natural products with special emphasis on marine animals and also algae during the last decades of the 20th century has revealed the importance of marine organisms as producers of substances useful for the treatment of human diseases. Though a large number of bioactive substances have been identified, some many years ago, only recently the first drugs from the oceans were approved. Quite astonishingly, the immense diversity of microbes in the marine environments and their almost untouched capacity to produce natural products and therefore the importance of microbes for marine biotechnology was realized on a broad basis by the scientific communities only recently. This has strengthened worldwide research activities dealing with the exploration of marine microorganisms for biotechnological applications, which comprise the production of bioactive compounds for pharmaceutical use, as well as the development of other valuable products, such as enzymes, nutraceuticals and cosmetics. While the focus in these fields was mainly on marine bacteria, also marine fungi now receive growing attention. Although culture-dependent studies continue to provide interesting new chemical structures with biological activities at a high rate and represent highly promising approaches for the search of new drugs, exploration and use of genomic and metagenomic resources are considered to further increase this potential. Many efforts are made for the sustainable exploration of marine microbial resources. Large culture collections specifically of marine bacteria and marine fungi are available. Compound libraries of marine natural products, even of highly purified substances, were established. The expectations into the commercial exploitation of marine microbial resources has given rise to numerous institutions worldwide, basic research facilities as well as companies. In Europe, recent activities have initiated a dynamic development in marine biotechnology, though concentrated efforts on marine natural product research are rare. One of these activities is represented by the Kieler Wirkstoff-Zentrum KiWiZ, which was founded in 2005 in Kiel (Germany).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Elsevier
    In:  Microbiological Research, 167 (5). pp. 262-269.
    Publication Date: 2020-07-30
    Description: This is the first description of a functional chitinase gene within the crenarchaeotes. Here we report of the heterologues expression of the ORF BAB65950 from Sulfolobus tokodaii in E. coli. The resulting protein degraded chitin and was hence classified as chitinase (EC 3.2.4.14). The protein characterization revealed a specific activity of 75 mU/mg using colloidal chitin as substrate. The optimal activity of the enzyme was measured at pH 2.5 and 70 °C, respectively. A dimeric enzyme configuration is proposed. According to amino acid sequence similarities chitinases are attributed to the two glycoside hydrolase families 18 and 19. The derived amino acid sequence of the S. tokodaii gene differed from sequences of these two glycoside hydrolase families. However, within a phylogenetic tree of protein sequences, the crenarchaeal sequence of S. tokodaii clustered in close proximity to members of the glycoside hydrolase family 18.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-01-24
    Description: Three novel natural products, sorbifuranones A–C (4–6), were isolated from a Penicillium chrysogenum fungus isolated from the marine sponge Ircinia fasciculata. Sorbifuranones B (5) and C (6) and 2′,3′-dihydrosorbicillin, a putative precursor to sorbifuranone B, were also found in the culture of another Penicillium strain, which was isolated from the sponge Tethya aurantium. Their constitutions were elucidated mainly by 2D NMR. NOE correlations in combination with quantum chemical calculations and comparison of experimental and calculated electronic circular dichroism (CD) spectra permitted assignment of the absolute configuration of sorbifuranone C. The structures hint at a two-step cleavage-cyclization sequence of sorbifuranone A (4) leading to the spiro compound sorbifuranone C, while sorbifuranone B is likely to be the respective cleavage product of a putative 2′,3′-dihydrosorbifuranone A, which cannot cyclize further.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-01-22
    Description: The gene coding for the anion-specific porin of the halophilic eubacterium Ectothiorhodospira (Ect.) vacuolata was cloned and sequenced, the first such gene so analyzed from a purple sulfur bacterium. It encodes a precursor protein consisting of 374 amino acid (aa)-residues including a signal peptide of 22-aa residues. Comparison with aa sequences of porins from several other members of the Proteobacteria revealed little homology. Only two regions showed local homology with the previously sequenced porins of Neisseria species, Comamonas acidovorans, Bordetella pertussis, Alcaligenes eutrophus, and Burkholderia cepacia. Genomic Southern blot hybridization studies were carried out with a probe derived from the 5′ end of the gene coding for the porin of Ect. vacuolata. Two related species, Ect. haloalkaliphila and Ect. shaposhnikovii, exhibited a clear signal, while the extremely halophilic bacterium Halorhodospira (Hlr.) halophila (formerly Ect. halophila) did not show any cross-hybridization even at low stringency. This result is in good accordance with a recently proposed reassignment within the family Ectothiorhodospiraceae, which included the separation of the extremely halophilic species into the new genus Halorhodospira.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-06-17
    Description: Sequences of the 16S rRNA gene were determined from all type strains of the recognized Ectothiorhodospira species and from a number of additional strains. For the first time, these data resolve the phylogenetic relationships of the Ectothiorhodospiraceae in detail, confirm the established species, and improve the classification of strains of uncertain affiliation. Two major groups that are recognized as separate genera were clearly established. The extremely halophilic species were removed from the genus Ectothiorhodospira and reassigned to the new genus Halorhodospira gen. nov., to recognize that the most halophilic eubacteria are species of this genus. These species are Halorhodospira halophila comb. nov., Halorhodospira halochloris comb. nov., and Halorhodospira abdelmalekii comb. nov. Among the slightly halophilic Ectothiorhodospira species, the classification of strains belonging to Ectothiorhodospira mobilis and Ectothiorhodospira shaposhnikovii was improved. Several strains that were tentatively identified as Ectothiorhodospira mobilis form a separate cluster on the basis of their 16S rDNA sequences and are recognized as two new species: Ectothiorhodospira haloalkaliphila sp. nov., which includes the most alkaliphilic strains originating from strongly alkaline soda lakes, and Ectothiorhodospira marina, describing isolates from the marine environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...