GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (1)
  • SPRINGER HEIDELBERG  (1)
  • 2010-2014  (2)
  • 1995-1999
  • 1
    Publication Date: 2014-05-05
    Description: Correlating metal to calcium (Me/Ca) ratios of marine biogenic carbonates, such as bivalve shells, to environmental parameters has led to contradictory results. Biogenic carbonates represent complex composites of organic and inorganic phases. Some elements are incorporated preferentially into organic phases, and others are incorporated into inorganic phases. Chemical sample pretreatment to remove the organic matrix prior to trace element analysis may increase the applicability of the investigated proxy relationship, though its efficiency and side effects remain questionable. We treated inorganic calcium carbonate and bivalve shell powder (Arctica islandica) with eight different chemical treatments including H2O2, NaOH, NaOCl, and acetone and analyzed the effects on (1) Me/Ca ratios (Sr/Ca, Mg/Ca, Ba/Ca, and Mn/Ca), (2) organic matter (≈N) content, and (3) mineralogical composition of the calcium carbonate. The different treatments (1) cause element and treatment specific changes of Me/Ca ratios, (2) vary in their efficiency to remove organic matter, and (3) can even alter the phase composition of the calcium carbonate (e.g., formation of Ca(OH)2 during NaOH treatment). Among all examined treatments there were none without any side effects. In addition, certain Me/Ca changes we observed upon chemical treatment contradict our expectations that lattice-bound elements (Sr and Ba) should not be affected, whereas non-lattice-bound elements (Mg and Mn) should decrease upon removal of the organic matrix. For instance, we observe that NaOCl treatment did not alter Sr/Ca ratios but caused unexpected changes of the Mg/Ca ratios. The latter demonstrates that the buildup of complex biogenic composites like the shell of Arctica islandica are still poorly understood.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-16
    Description: In May 2009, we studied the bivalve Spondylus crassisquama and its relevance for macrobenthic biodiversity off the north Ecuadorian coast. We found that the large and heavy shells offer an exclusive substrate for numerous epibiont species and highly specialized carbonate-drilling endobiont species (71 species in total), which is a distinctly different and much more diverse habitat than the surrounding sandy bottoms (13 species, 4 of them found in both habitats). This is reflected by a Bray–Curtis dissimilarity index of 0.88. We discuss in detail the live habits of all 9 species of drilling endobionts that we found, and conclude that these can be seen as true mutualists, with the exception of boring sipunculids and bivalves. To further illustrate this complex co-existence, we visualize and quantify for the first time the tremendous effects of boring organisms on the shell structure of S. crassisquama by means of magnetic resonance imaging and a video appendix is provided.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...