GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (2)
  • 2010-2014
  • 2000-2004  (1)
  • 1995-1999  (1)
  • 1970-1974
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 108 (C3). p. 3092.
    Publication Date: 2019-04-04
    Description: A first step for improving the climatological state of high‐resolution general circulation models by means of data assimilation is presented. A method developed for the assimilation of statistical characteristics into chaotic ocean models is applied to assimilate SSH variability from TOPEX/POSEIDON and ERS1 in association with temperature and salinity from the World Ocean Atlas 1997 in order to estimate the underlying mean circulation. The method requires a parameterization of SSH variability which derives from the approach of Green and Stone. By estimating initial conditions for temperature and salinity, a mean state is achieved which, although not fully consistent with the altimetric and climatological data, is markedly improved on time scales of one year in comparison to the control run. The assimilation of SSH variability data introduces complementary information about the main frontal structures consistent with climatological observations. The state is however not an equilibrium state and returns back to the first guess quasi‐equilibrium state for longer integration periods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 101 (C6). pp. 14175-14190.
    Publication Date: 2019-09-23
    Description: We present a new method for assimilating observations of sea surface height (SSH) into a high‐resolution primitive equation model. The method is based on the concept of reinitialization. First, the surface velocity increments necessary to adjust the model forecast to the observed geostrophic surface currents are projected onto deep velocity increments by a linear regression method. Second, changes in the density field required to balance the changes in the velocity field geostrophically are obtained from an inversion of the thermal wind equation. A unique partition of the density increments into corresponding temperature and salinity changes is realized by conserving the local θ‐S relation of the model forecast. In contrast to pure statistical methods that infer temperature and salinity changes from correlations with SSH anomalies, our approach explicitly conserves water mass properties on isopycnals. For the assimilation experiment we use optimally interpolated maps of Geosat SSH anomalies (the mean topography is taken from the model), which are assimilated into the World Ocean Circulation Experiment (WOCE) Community Modeling Effort (CME) model of the North Atlantic Ocean at 5‐day intervals covering the year 1987. It is shown that the assimilation significantly improves the model's representation of eddy activity, with the hydrographic structure of individual eddies agreeing well with independent hydrographic observations. The importance of a careful treatment of water mass properties in the assimilation process is discussed and further illustrated by comparing different assimilation schemes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...