GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Reviews in Aquaculture, WILEY-BLACKWELL PUBLISHING, ISSN: 1753-5131
    Publication Date: 2019-07-17
    Description: There is significant commercial and research interest in the application of sea cucumbers as nutrient recyclers and processors of particulate waste in polyculture or integrated multitrophic aquaculture (IMTA) systems. The following article reviews examples of existing IMTA systems operating with sea cucumbers, and details the role and effect of several sea cucumber species in experimental and pilot IMTA systems worldwide. Historical observations and quantification of impacts of sea cucumber deposit-feeding and locomotion are examined, as is the development and testing of concepts for the application of sea cucumbers in sediment remediation and site recovery. The extension of applied IMTA systems is reported, from basic piloting through to economically viable farming systems operating at commercial scales. The near-global recognition of the ecological and economic value of deposit-feeding sea cucumbers in IMTA applications within existing and developing aquaculture industries is discussed. Predictions and recommendations are offered for optimal development of sea cucumber IMTA globally. Future directions within the industry are indicated, and key areas of ecological, biological and commercial concern are highlighted to be kept in mind and addressed in a precautionary manner as the industry develops.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: We report a new synthesis of best estimates of the inputs of fixed nitrogen to the world ocean via atmospheric deposition and compare this to fluvial inputs and dinitrogen fixation. We evaluate the scale of human perturbation of these fluxes. Fluvial inputs dominate inputs to the continental shelf, and we estimate that about 75% of this fluvial nitrogen escapes from the shelf to the open ocean. Biological dinitrogen fixation is the main external source of nitrogen to the open ocean, i.e., beyond the continental shelf. Atmospheric deposition is the primary mechanism by which land-based nitrogen inputs, and hence human perturbations of the nitrogen cycle, reach the open ocean. We estimate that anthropogenic inputs are currently leading to an increase in overall ocean carbon sequestration of ~0.4% (equivalent to an uptake of 0.15 Pg C yr−1 and less than the Duce et al. (2008) estimate). The resulting reduction in climate change forcing from this ocean CO2 uptake is offset to a small extent by an increase in ocean N2O emissions. We identify four important feedbacks in the ocean atmosphere nitrogen system that need to be better quantified to improve our understanding of the perturbation of ocean biogeochemistry by atmospheric nitrogen inputs. These feedbacks are recycling of (1) ammonia and (2) organic nitrogen from the ocean to the atmosphere and back, (3) the suppression of nitrogen fixation by increased nitrogen concentrations in surface waters from atmospheric deposition, and (4) increased loss of nitrogen from the ocean by denitrification due to increased productivity stimulated by atmospheric inputs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-14
    Description: Author(s): A. Zamora, L. M. Sieberer, K. Dunnett, S. Diehl, and M. H. Szymańska Different complex systems can exhibit remarkably similar behavior, a concept known as universality. Defining different classes of universality for driven nonequilibrium systems, however, is difficult. A new analysis shows how one of these classes—the Kardar-Parisi-Zhang class—can be experimentally realized using a fluid of exciton-polaritons and how the universal behavior can be changed by making this system strongly anisotropic. [Phys. Rev. X 7, 041006] Published Fri Oct 13, 2017
    Electronic ISSN: 2160-3308
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-02-16
    Description: Renin is synthesized in the principal cells of the collecting duct (CD), and its production is increased via cAMP in angiotensin (ANG) II-dependent hypertension, despite suppression of juxtaglomerular (JG) renin. Vasopressin, one of the effector hormones of the renin-angiotensin system (RAS) via the type 2-receptor (V2R), activates the cAMP/PKA/cAMP response element-binding protein (CREB) pathway and aquaporin-2 expression in principal cells of the CD. Accordingly, we hypothesized that activation of V2R increases renin synthesis via PKA/CREB, independently of ANG II type 1 (AT 1 ) receptor activation in CD cells. Desmopressin (DDAVP; 10 –6 M), a selective V2R agonist, increased renin mRNA (~3-fold), prorenin (~1.5-fold), and renin (~2-fold) in cell lysates and cell culture media in the M-1 CD cell line. Cotreatment with DDAVP+H89 (PKA inhibitor) or CREB short hairpin (sh) RNA prevented this response. H89 also blunted DDAVP-induced CREB phosphorylation and nuclear localization. In 48-h water-deprived (WD) mice, prorenin-renin protein levels were increased in the renal inner medulla (~1.4- and 1.8-fold). In WD mice treated with an ACE inhibitor plus AT 1 receptor blockade, renin mRNA and prorenin protein levels were still higher than controls, while renin protein content was not changed. In M-1 cells, ANG II or DDAVP increased prorenin-renin protein levels; however, there were no further increases by combined treatment. These results indicate that in the CD the activation of the V2R stimulates renin synthesis via the PKA/CREB pathway independently of RAS, suggesting a critical role for vasopressin in the regulation of renin in the CD.
    Print ISSN: 1931-857X
    Electronic ISSN: 1522-1466
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-22
    Description: We report a new synthesis of best estimates of the inputs of fixed nitrogen to the world ocean via atmospheric deposition, and compare this to fluvial inputs and di-nitrogen fixation. We evaluate the scale of human perturbation of these fluxes. Fluvial inputs dominate inputs to the continental shelf, and we estimate about 75% of this fluvial nitrogen escapes from the shelf to the open ocean. Biological di-nitrogen fixation is the main external source of nitrogen to the open ocean, i.e. beyond the continental shelf. Atmospheric deposition is the primary mechanism by which land based nitrogen inputs, and hence human perturbations of the nitrogen cycle, reach the open ocean. We estimate that anthropogenic inputs are currently leading to an increase in overall ocean carbon sequestration of ~0.4% (equivalent to an uptake of 0.15 Pg C yr -1 and less than the Duce et al., 2008 estimate). The resulting reduction in climate change forcing from this ocean CO 2 uptake is offset to a small extent by an increase in ocean N 2 O emissions. We identify four important feedbacks in the ocean atmosphere nitrogen system that need to be better quantified to improve our understanding of the perturbation of ocean biogeochemistry by atmospheric nitrogen inputs. These feedbacks are recycling of (1) ammonia and (2) organic nitrogen from the ocean to the atmosphere and back, (3) the suppression of nitrogen fixation by increased nitrogen concentrations in surface waters from atmospheric deposition, and (4) increased loss of nitrogen from the ocean by denitrification due to increased productivity stimulated by atmospheric inputs.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...