GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (3)
Document type
Years
Year
  • 1
    Publication Date: 2017-07-04
    Description: Purpose: DOTA-AR, a bombesin-antagonist peptide, has potential clinical application for targeted imaging and therapy in gastrin-releasing peptide receptor (GRPr)–positive malignancies when conjugated with a radioisotope such as 90 Y. This therapeutic potential is limited by the fast washout of the conjugates from the target tumors. WST-11 (Weizmann STeba-11 drug; a negatively charged water-soluble palladium-bacteriochlorophyll derivative, Tookad Soluble) vascular targeted photodynamic therapy (VTP) is a local ablation approach recently approved for use in early-stage prostate cancer. It generates reactive oxygen/nitrogen species within tumor blood vessels, resulting in their instantaneous destruction followed by rapid tumor necrosis. We hypothesize that the instantaneous arrest of tumor vasculature may provide a means to trap radiopharmaceuticals within the tumor, thereby improving the efficacy of targeted radiotherapy. Experimental Design: GRPr-positive prostate cancer xenografts (PC-3 and VCaP) were treated with 90 Y-DOTA-AR with or without VTP. The uptake of radioisotopes was monitored by Cherenkov luminescence imaging (CLI). The therapeutic efficacy of the combined VTP and 90 Y-DOTA-AR in PC-3 xenografts was assessed. Results: CLI of 90 Y-DOTA-AR demonstrated longer retention of radiotracer within the VTP-treated PC-3 xenografts compared with the non–VTP-treated ones ( P 〈 0.05) at all time points (24–144 hours) after 90 Y-DOTA-AR injection. A similar pattern of retention was observed in VCaP xenografts. When 90 Y-DOTA-AR administration was combined with VTP, tumor growth delay was significantly longer than for the control or the monotherapy groups. Conclusions: Tumor vascular arrest by VTP improves 90 Y-DOTA-AR retention in the tumor microenvironment thereby enhancing therapeutic efficacy. Clin Cancer Res; 23(13); 3343–51. ©2017 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-16
    Description: Purpose: WST11 vascular targeted photodynamic therapy (VTP) is a local ablation approach relying upon rapid, free radical-mediated destruction of tumor vasculature. A phase III trial showed that VTP significantly reduced disease progression when compared with active surveillance in patients with low-risk prostate cancer. The aim of this study was to identify a druggable pathway that could be combined with VTP to improve its efficacy and applicability to higher risk prostate cancer tumors. Experimental Design: Transcriptome analysis of VTP-treated tumors (LNCaP-AR xenografts) was used to identify a candidate pathway for combination therapy. The efficacy of the combination therapy was assessed in mice bearing LNCaP-AR or VCaP tumors. Results: Gene set enrichment analysis identifies the enrichment of androgen-responsive gene sets within hours after VTP treatment, suggesting that the androgen receptor (AR) may be a viable target in combination with VTP. We tested this hypothesis in mice bearing LNCaP-AR xenograft tumors by using androgen deprivation therapy (ADT), degarelix, in combination with VTP. Compared with either ADT or VTP alone, a single dose of degarelix in concert with VTP significantly inhibited tumor growth. A sharp decline in serum prostate-specific antigen (PSA) confirmed AR inhibition in this group. Tumors treated by VTP and degarelix displayed intense terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling staining 7 days after treatment, supporting an increased apoptotic frequency underlying the effect on tumor inhibition. Conclusions: Improvement of local tumor control following androgen deprivation combined with VTP provides the rationale and preliminary protocol parameters for clinical trials in patients presented with locally advanced prostate cancer. Clin Cancer Res; 24(10); 2408–16. ©2018 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-02
    Description: Purpose: PD-1/PD-L1 pathway inhibition is effective against advanced renal cell carcinoma, although results are variable and may depend on host factors, including the tumor microenvironment. Vascular-targeted photodynamic (VTP) therapy with the photosensitizer WST11 induces a defined local immune response, and we sought to determine whether this could potentiate the local and systemic antitumor response to PD-1 pathway inhibition. Experimental Design: Using an orthotopic Renca murine model of renal cell carcinoma that develops lung metastases, we treated primary renal tumors with either VTP alone, PD-1/PD-L1 antagonistic antibodies alone, or a combination of VTP and antibodies and then examined treatment responses, including immune infiltration in primary and metastatic sites. Modulation of PD-L1 expression by VTP in human xenograft tumors was also assessed. Results: Treatment of renal tumors with VTP in combination with systemic PD-1/PD-L1 pathway inhibition, but neither treatment alone, resulted in regression of primary tumors, prevented growth of lung metastases, and prolonged survival in a preclinical mouse model. Analysis of tumor-infiltrating lymphocytes revealed that treatment effect was associated with increased CD8 + :regulatory T cell (Treg) and CD4 + FoxP3-:Treg ratios in primary renal tumors and increased T-cell infiltration in sites of lung metastasis. Furthermore, PD-L1 expression is induced following VTP treatment of human renal cell carcinoma xenografts. Conclusions: Our results demonstrate a role for local immune modulation with VTP in combination with PD-1/PD-L1 pathway inhibition for generation of potent local and systemic antitumor responses. This combined modality strategy may be an effective therapy in cancers resistant to PD-1/PD-L1 pathway inhibition alone. Clin Cancer Res; 24(3); 592–9. ©2017 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...