GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Fungi. ; Life sciences. ; Microbiology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (327 pages)
    Edition: 2nd ed.
    ISBN: 9783662460115
    Series Statement: The Mycota Series ; v.7B
    DDC: 579.5138
    Language: English
    Note: Intro -- Series Preface -- Volume Preface to the Second Edition -- Volume Preface to the First Edition -- Contents -- List of Contributors -- Fungi -- 1 Saccharomycotina and Taphrinomycotina: The Yeasts and Yeastlike Fungi of the Ascomycota -- I. Introduction -- II. Occurrence, Distribution, and Ecology -- III. Importance -- A. Food, Beverage, and Industrial Uses -- B. Agriculturally Important Yeasts -- 1. Plant Pathogens -- 2. Biocontrol Yeasts -- C. Food and Beverage Spoilage -- D. Human and Animal Pathogens -- IV. Reproduction -- A. Asexual -- 1. Budding, Fission, Endospores, Chlamydospores -- 2. Pseudohyphae and True (Septate) Hyphae -- B. Sexual Reproduction -- V. Taxonomic Methods -- A. Phenotypic Characterization -- B. Genotypic Characterization -- VI. Phylogeny and Classification -- A. Phylogeny -- B. Classification -- 1. Saccharomycotina -- 2. Taphrinomycotina -- VII. Isolation, Maintenance, and Culture Availability -- A. Isolation -- B. Maintenance -- C. Culture Availability and Distribution -- VIII. Future Directions -- References -- 2 Pezizomycotina: Pezizomycetes, Orbiliomycetes -- I. Introduction -- II. Orbiliomycetes: An Overview -- III. Occurrence and Distribution -- A. Species Trapping Nematodes and Other Invertebrates -- B. Saprobic Species -- IV. Morphological Features -- A. Ascomata -- B. Asci -- C. Ascospores -- D. Paraphyses -- E. Septal Structures -- F. Nuclear Division -- G. Anamorphic States -- V. Reproduction -- VI. History of Classification and Current Hypotheses -- VII. Growth in Culture -- VIII. Pezizomycetes: An Overview -- IX. Occurrence and Distribution -- A. Parasitic Species -- B. Mycorrhizal Species -- C. Saprobic Species -- X. Morphological Features -- A. Ascomata -- B. Asci -- C. Ascospores -- D. Paraphyses -- E. Septal Structures -- F. Anamorphic States -- XI. Reproduction. , XII. History of Classification and Current Hypotheses -- A. Families of the Pezizomycetes -- 1. Ascobolaceae -- 2. Ascodesmidiaceae -- 3. Caloscyphaceae -- 4. Chorioactidaceae -- 5. Discinaceae -- 6. Glaziellaceae -- 7. Helvellaceae -- 8. Karstenellaceae -- 9. Morchellaceae -- 10. Pezizaceae -- 11. Pyronemataceae -- 12. Rhizinaceae -- 13. Sarcoscyphaceae -- 14. Sarcosomataceae -- 15. Tuberaceae -- XIII. Growth in Culture -- XIV. Conclusion -- References -- 3 Pezizomycotina: Sordariomycetes and Leotiomycetes -- I. Introduction -- II. Sordariomycetes -- A. Ecology -- B. Morphology -- 1. Ascomata -- 2. Centrum Development -- 3. Asci -- 4. Ascospores -- 5. Anamorphs -- 6. Ultrastructure -- C. Molecular Phylogeny -- D. Classification -- 1. Hypocreomycetidae -- a) Coronophorales -- b) Glomerellales -- c) Hypocreales -- d) Melanosporales -- e) Microascales -- 2. Sordariomycetidae -- a) Calosphaeriales -- b) Diaporthales -- c) Magnaporthales -- d) Ophiostomatales -- e) Boliniales -- f) Chaetosphaeriales -- g) Coniochaetales -- h) Sordariales -- 3. Xylariomycetidae -- 4. Orders Incertae Sedis -- a) Koralionastelales -- b) Lulworthiales -- c) Meliolales -- d) Phyllachorales -- e) Trichosphaeriales -- III. Leotiomycetes -- A. Classification History -- 1. History of Leotiomycetes -- 2. Current Classification of Leotiomycetes -- B. Molecular Phylogeny Update -- 1. Higher-Level Relationships of Leotiomycetes -- 2. Phylogeny Within Leotiomycetes -- C. Characters -- 1. Apothecium (Ascoma) Morphology, Anatomy, and Ultrastructure -- 2. Ecology and Biogeography -- IV. Geoglossomycetes -- V. Laboulbeniomycetes -- A. Laboulbeniales -- B. Pyxidiophorales -- VI. Problems and Perspectives -- A. Genome Project -- B. Environmental Study -- VII. Culture and Maintenance -- VIII. Conclusion -- References -- 4 Pezizomycotina: Lecanoromycetes -- I. Introduction. , II. Occurrence and Distribution -- III. Substrate Range and Ecology -- A. Substrate Range -- B. Lifestyles -- C. Mycobiont-Photobiont Associations -- IV. Mycobiont-Photobiont Cellular Contacts -- V. Morphological and Chemical Features -- A. Thalli -- B. Ascomata -- 1. Ascoma Morphology -- 2. Ascoma Development -- C. Asci -- 1. Ascus Walls -- 2. Ascus Apical Structure -- 3. Dehiscence Mechanisms -- D. Ascospores -- E. Interascal Filaments -- F. Pycnidia -- G. Asexual Propagules -- H. Secondary Compounds -- VI. Origin and Diversification -- VII. Orders and Classification -- A. Acarosporales -- B. Baeomycetales -- C. Caliciales -- D. Candelariales -- E. Lecanorales -- F. Lecideales -- G. Ostropales -- H. Peltigerales -- I. Pertusariales -- J. Rhizocarpales -- K. Sarrameanales -- L. Teloschistales -- M. Trapeliales -- N. Umbilicariales -- VIII. Conclusion -- References -- 5 Pezizomycotina: Eurotiomycetes -- I. Phylogeny and Taxonomy -- A. Eurotiomycetidae -- 1. Eurotiales -- a) Aspergillaceae -- i. Taxonomy -- ii. Asexual Morphology -- iii. Sexual Morphology and Self-Fertility -- b) Thermoascaceae -- i. Taxonomy -- ii. Asexual and Sexual Morphology -- c) Trichocomaceae -- i. Taxonomy -- ii. Asexual and Sexual Morphology -- d) Disputed Families: Monascaceae and Elaphomycetaceae -- 2. Onygenales -- a) Core Families of Onygenales -- b) Ajellomycetaceae -- 3. Arachnomycetales, Ascosphaera, and Eremascus -- 4. Coryneliales -- B. Chaetothyriomycetidae -- 1. Chaetothyriales -- 2. Verrucariales -- 3. Pyrenulales -- 4. Celotheliales ad int. (Gueidan et al. 2014) -- C. Taxa of Uncertain Placement -- 1. Mycocaliciomycetidae/Mycocaliciales -- 2. Marine Species of Dactylospora and Sclerococcum -- 3. Cirrosporium novae-zelandiae -- II. Ecology and Economic Importance -- A. Extremophilism -- B. Animal Pathogens -- 1. Onygenalean Pathogens. , a) Histoplasmosis, Blastomycosis, and Paracoccidioidomycosis -- b) Coccidioidomycosis or ``Valley Fever´´ -- c) Dermatophytes -- d) Chalkbrood of Bees -- 2. Eurotialean Pathogens -- C. Plant Pathogens -- D. Mutualistic Interactions -- 1. Ectomycorrhizae -- 2. Lichens -- 3. Myrmecophytes -- E. Food Contamination -- F. Food Production -- G. Toxic Secondary Metabolites -- H. Industrial Uses -- III. Summary -- References -- 6 Pezizomycotina: Dothideomycetes and Arthoniomycetes -- I. Introduction -- II. Character Evolution: Divergence and Convergence -- A. Morphology and Development -- B. Brief Taxonomic History -- III. Ecology and Distribution -- A. Associations with Plants and Plant Debris -- B. Aquatic Species -- C. Associations with Algae and Other Lichens -- D. Rock Environments and Oligotrophism -- IV. Modern Classification and Phylogeny -- A. Dothideomycetes -- 1. Pleosporomycetidae -- 2. Dothideomycetidae -- 3. Incertae Sedis Lineages -- B. Arthoniomycetes -- V. Maintenance and Culture -- VI. Conclusions -- References -- Nomenclature and Documentation -- 7 The Shifting Sands of Fungal Naming Under the ICN and the One Name Era for Fungi -- I. Introduction -- II. International Code of Nomenclature for Algae, Fungi, and Plants (ICN) -- A. Transition to One Name Per Fungus -- 1. History and Enactment of Rule Changes -- 2. How One Name Per Fungus Will Happen Under the New Rules -- B. Other Major and Minor Changes in the ICN -- 1. Effective Publication via Electronic Publication -- 2. Latin or English for Valid Publication of Names of New Taxa -- 3. Registration of Fungal Names -- 4. Minor Changes -- C. Practical Notes on Using the ICN -- 1. How Do I Describe New Taxa at the Rank of Species? -- a) Validation -- b) Legitimization -- 2. How Do I Describe New Taxa at the Rank of Genus? -- 3. What Is an Ex-type?. , 4. How and When Do I Designate a Lectotype for a Species? -- 5. How and When Do I Designate a Neotype for a Species? -- 6. How and When Do I Designate an Epitype for a Species? -- 7. How Do I Validly Publish New Combinations? -- 8. How Do I Validly Publish a Replacement Name Also Known as a Nomen Novum? -- 9. How Do I Correctly Give Author Citations for Taxa? -- III. Potential Changes to Nomenclatural Rules -- IV. Conspectus and the Future of Fungal Naming -- References -- 8 The Role of Herbaria and Culture Collections -- I. Introduction -- II. Best Practices for Fungal Herbaria -- A. Preparing Fungal Reference Specimens -- B. Preparing Dried Culture Specimens -- C. Numbering and Labeling Fungal Specimens -- D. Storage and Organization of Dried Specimens -- E. Requesting, Annotating, and Returning Specimens -- F. Use of Fungal Herbarium Specimens in Molecular Studies -- 1. Introduction -- 2. Contamination of Herbarium DNA Samples -- 3. Extraction of DNA from Herbarium Specimens -- 4. DNA Quality from Herbarium Specimens -- III. Maintenance of Living Cultures -- A. Introduction -- B. Metabolically Active Preservation -- 1. Storage on Agar with Periodic Transfer -- 2. Storage on Agar Under Mineral Oil and Distilled Water -- C. Metabolically Inactive Preservation -- 1. Cryopreservation (Cryogenic Storage) -- 2. Freeze Drying -- IV. Conclusions -- References -- Evolution -- 9 Subcellular Structure and Biochemical Characters in Fungal Phylogeny -- I. Introduction -- II. The Role of Subcellular Structure in Fungal Phylogeny -- III. The Role of Biochemical Characters in Fungal Phylogeny -- IV. Character and Character State Definition and Refinement -- V. Structural and Biochemical Database -- VI. Structural and Biochemical Database in Phylogenetic Analysis -- VII. Development of the Fungal Subcellular Ontology. , VIII. Specimen Preparation and Evaluation for Subcellular Structure.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-02
    Description: Article The emergence of resistant Plasmodium strains fuels the search for new antimalarials. Here, the authors present a new class of potent antimalarial compounds, the triaminopyrimidines, that display low toxicity and long half-life in animal models. Nature Communications doi: 10.1038/ncomms7715 Authors: Shahul Hameed P., Suresh Solapure, Vikas Patil, Philipp P. Henrich, Pamela A. Magistrado, Sowmya Bharath, Kannan Murugan, Pavithra Viswanath, Jayashree Puttur, Abhishek Srivastava, Eknath Bellale, Vijender Panduga, Gajanan Shanbag, Disha Awasthy, Sudhir Landge, Sapna Morayya, Krishna Koushik, Ramanatha Saralaya, Anandkumar Raichurkar, Nikhil Rautela, Nilanjana Roy Choudhury, Anisha Ambady, Radha Nandishaiah, Jitendar Reddy, K. R. Prabhakar, Sreenivasaiah Menasinakai, Suresh Rudrapatna, Monalisa Chatterji, María Belén Jiménez-Díaz, María Santos Martínez, Laura María Sanz, Olivia Coburn-Flynn, David A. Fidock, Amanda K. Lukens, Dyann F. Wirth, Balachandra Bandodkar, Kakoli Mukherjee, Robert E. McLaughlin, David Waterson, Lyn Rosenbrier-Ribeiro, Kevin Hickling, V. Balasubramanian, Peter Warner, Vinayak Hosagrahara, Adam Dudley, Pravin S. Iyer, Shridhar Narayanan, Stefan Kavanagh, Vasan K. Sambandamurthy
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-03-21
    Description: Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability – mesic microenvironments – are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. In warming, drying climates, locally wet sites could form hydrologic microrefugia in which species could persist even as the surrounding landscape becomes unsuitable habitat. A wide variety of physical processes could form locally wet sites, which, if they meet physiological and community-interaction requirements, could act as microrefugia. Identifying these sites could strengthen climate-cognizant conservation strategies, but requires improved understanding of hard-to-observe hydrologic processes such as groundwater flow.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-11-27
    Description: Architecture of the CBF3–centromere complex of the budding yeast kinetochore Architecture of the CBF3–centromere complex of the budding yeast kinetochore, Published online: 26 November 2018; doi:10.1038/s41594-018-0154-1 Point centromeres of budding yeast direct binding of a CBF3 complex that recruits the centromere-specific Cse4 nucleosome to CEN loci. A cryo-EM structure of CBF3 bound to its cognate CDEIII element and a model of the CBF3–Cse4–CEN complex reveal interactions underlying kinetochore assembly.
    Print ISSN: 1545-9993
    Electronic ISSN: 1545-9985
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-11-07
    Description: Recent experiments have shown that mouse primary visual cortex (V1) is very different from that of cat or monkey, including response properties—one of which is that contrast invariance in the orientation selectivity (OS) of the neurons’ firing rates is replaced in mouse with contrast-dependent sharpening (broadening) of OS in excitatory...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...